Browse > Article
http://dx.doi.org/10.5806/AST.2011.24.4.243

Selective determination of mercury (II) ion in aqueous solution by chemiluminescence method  

Kim, Kyung-Min (Department of Chemistry, Kyungpook National University)
Jang, Taek-Gyun (Department of Chemistry, Kyungpook National University)
Kim, Young-Ho (Research Institute of Advanced Energy Technology, Kyungpook National University)
Oh, Sang-Huyb (Center for Gas Analysis, Korea Research Institute of Standards and Science)
Lee, Sang-Hak (Department of Chemistry, Kyungpook National University)
Publication Information
Analytical Science and Technology / v.24, no.4, 2011 , pp. 243-248 More about this Journal
Abstract
A selective determination method of mercury (II) ion in aqueous solution by luminol-based chemiluminescence system (luminol CL system) has been developed. Determination of metal ions such as copper (II), iron (III), chromium (III) ion in solution by the luminol CL system using its catalytic role in the reaction of luminol and hydrogen peroxide has been reported by several groups. In this study, the catalytic activity of mercury (II) ion in the reaction of luminol and hydrogen peroxide was observed by the enhanced CL intensity of the luminol CL system. Based on this phenomenon, experimental conditions of the luminol CL system were investigated and optimized to determine mercury (II) ion in aqueous solution. While mercury (II) ion in mixed sample solution containing mercury (I) and (II) ions highly enhanced the CL intensity of the luminol CL system, the mercury (I) ion could not enhanced the CL intensity. Thus selective determination of the mercury (II) ions in a mixture containing mercury (I) and (II) ions could be achieved. Each concentration of mercury (I) and (II) ions in aqueous solution can be obtained from the results of the CL method that give the concentration of only mercury (II) ion and the inductively coupled plasma (ICP) method that give the total concentration of mercury ions. On the optimized conditions, the calibration curve of mercury (II) ion was linear over the range from $1.25{\times}10^{-5}$ to $2.50{\times}10^{-3}M$ with correlation coefficient of 0.991. The detection limit of mercury (II) ion in aqueous solution was calculated to be $1.25{\times}10^{-7}M$.
Keywords
mercury (II) ion; chemiluminescence; luminol; metal ion determination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Gochfeld, Ecotox. Environ. Safety, 56(1), 174-179 (2003).   DOI   ScienceOn
2 Z. Zhang, S. Zhang and X. Zhang, Analytica. Chimica. Acta., 541(1-2), 37-47 (2005).   DOI   ScienceOn
3 J. P. Auses, S. L. Cook and J. T. Maloy, Anal. Chem., 47, 244-249 (1975).   DOI
4 X. F. Wang and L. Andrews, Inorg. Chemi., 44(1), 108-113 (2005).   DOI   ScienceOn
5 C. Xiao, D. A. Palmer, D. J. Wesolowski, S. B. Lovitz and D. W. King, Anal. Chem., 74(9), 2210-2216 (2002).   DOI   ScienceOn
6 M. Yuan and Y. Li, Org. Lett., 9(12), 2313-2316 (2007).   DOI   ScienceOn
7 I. P. A. Morais, I. V. Toth and O. S. S Gangel, Talanta, 66(2), 341-347 (2005).   DOI   ScienceOn
8 A. M. Powe, S. Das, M. Lowry, B. El-Zahab, S. O. Fakayode, M. L. Geng, G. A. baker, L. Wang, M. E. McCarroll, G. Patonay, M. Li, M. Aljarrah, S. Neal and I. M. Warner, Anal. Chem., 82(12), 4865-4894 (2010).   DOI   ScienceOn
9 J. C. Miller and J. N. Miller, 'Statistics for Analytical Chemistry', 2nd Ed., Ellis Horwood, Chichester, England, 1988.
10 J. Tolgyessy and E. H. Klehr, 'Nuclear Environmental Chemical Analysis', Wiley, New York, 1987.
11 J. Qvarnstrom, Q. Tu, W. Frech and C. Ludke, Analyst, 125(6), 1193-1197 (2000).   DOI   ScienceOn
12 A. Stroh, U. Voellkopf, E. R. Denoyer, J. Anal. At. Spectrom., 7, 1201-1206 (1992).   DOI
13 J. D. Winefordner and T. J. Vickers, Anal. Chem., 36, 161-168 (1964).   DOI
14 B. Aizpun, M. L. Fernandez, E. Blanco and A. Sanz-Medel, J. Anal. At. Spectrom., 9(11), 1279-1284 (1994).   DOI
15 H. Li, Y. Zhang and X. Wang, Microchim. Acta., 160, 119-123 (2008).   DOI
16 G. A. Westpha, S. Asgari, T. G. Schulz, J. Bunger, M. Muller and E. Hallier, Arch. Toxicol., 77(1), 50-55 (2003).   DOI
17 J. D. Winefordner and R. A. Staab, Anal. Chem., 36(7), 1367-1369 (1964).   DOI
18 A. Cebulska-Wasilewska, A. Panek, Z. Zabinski and P. Moszczynski, Mutat. Res., 586, 102-114 (2005).   DOI   ScienceOn
19 N. Strafford and P. F. Wyatt, Analyst, 61, 528-535 (1936).   DOI
20 H. Smith, Anal. Chem., 35, 635-636 (1963).   DOI
21 K. Tanabe, K. Chiba, H. Haraguchi and K. Fuwa, Anal. Chem., 53, 1450-1453 (1981).   DOI   ScienceOn
22 D. Streets, J. Hao, Y. Wu, J. Jiang, M. Chan, H. Tian and X. Feng, Atmos. Environ., 39, 7789-7806 (2005).   DOI   ScienceOn
23 WHO-IPCS. Environmental health criteria. http://www.inchem.org/documents/ehc/ehc/ehc101.htm#PartNumber:10
24 P. B. Tchounwou, W. K. Ayensu, N. Ninashvili and D. Sutton, Environ. Toxicol., 18(3), 149-175 (2003).   DOI   ScienceOn
25 H. A. Young, D. A. Geier and M. R. Geier, J. Neurol. Sci., 271(1), 110-118 (2008).   DOI   ScienceOn
26 C. Anthony, Water Air Soil Poll., 98(2), 241-254 (1997).
27 Y. Wu, S. Wang, D. Streets, J. Zhao, M. Chen and J. Jiang, Environ. Sci. Technol., 40, 5312-5318 (2006).   DOI   ScienceOn
28 M. S. Landis, G. J. Keeler, K. I. Al-Wali and R. K. Stevens, Atmos. Environ., 38, 613-622 (2004).   DOI   ScienceOn
29 C. Baird and M. Cann, 'Environmental chemistry', 3rd Ed., W. H. Freeman & company, New York, 2004.
30 B. H. Sipple and J. Swartout, 'Mercury study report to Congress', Vol 5, Environmental protection agency, Washington D.C., 1997.