• 제목/요약/키워드: M&As

검색결과 74,650건 처리시간 0.087초

염스트레스가 담배식물의 광합성, proline 및 이온함량에 미치는 영향 (Effects of Salt Stress on Photosynthesis, Free Proline Content and Ion Content in Tobacco.)

  • 이상각;신주식;석영선;배길관
    • 한국환경농학회지
    • /
    • 제17권3호
    • /
    • pp.215-219
    • /
    • 1998
  • 본 실험은 담배의 염스트레스에 대한 생장특성 및 생리적반응을 구명하기 위하여 NaCl을 농도별로 처리하여 시험한 결과를 요약하면 다음과 같다. NaCl농도가 높아질수록 생장은 크게 억제되었으며, 90mM의 지상부/지하부율이 약 2.0이하에서 생육형질이 크게 감소하여 생리적인 제한농도로 나타났다. 광합성량, 증산량 및 수분이용효율은 NaCl농도가 높아질수록 감소하였으며, 광합성량은 60mM에서 대조구의 50%의 감소로 염해에 민감하게 반응하였으며, 증산량과 수분이용효율은 처리농도간에 큰 차이는 없었다. 잎수분포텐셀은 염농도의 증가에 따라 낮아졌으며 30mM에서 대조구의 2배로 낮아졌으며 처리농도간에는 120mM에서 크게 감소하였다. Proline함량은 NaCl농도가 높아짐에 따라 120mM가지는 일정하게 증가하다가 150mM에서 감소하였다. NaCl농도에 따라 $Ca^{2+}$, $Mg^{2+}$, $K^+$의 함량은 90mM까지는 증가하였고, 120mM이상에서는 감소하였다. $K^+$은 염농도의 증가에 따라 완만히 증가하다가 150mM이상에서 급격히 증가하였다. $Cl^-$은 염농도의 증가에 따라 30mM의 일시적 증가외는 처리간의 차이는 없이 감소하는 경향이었다. $K^+/Na^+$율은 염농도가 높아질수록 감소하였으며 90mM의 1.0이하에서 세포내의 항상성이 유지되는 농도로 나타났다. $K^+$$Na^+$함량과는 부의 상관을, $K^+/Na^+$율과 단백질함량과는 정의 상관을 나타냈다.

  • PDF

복부(腹部) 단순X선검사시(單純X線檢査時) 피검자(被檢者)의 피폭선량(被曝線量)에 대(對)한 연구(硏究) (A Study of the Medical Exposure Dose in Abdomen A-P X-ray Examination)

  • 김창균
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제17권1호
    • /
    • pp.49-54
    • /
    • 1994
  • This study was conducted to find out the medical exposure dose in simple abdomen A-P projection of adults, based on the 87 hospitals located in Seoul. As the results, the following conclusions have been reached; 1. 88.5 % of the surveyed hospitals had the use of $65\;kVp{\sim}79\;kVp(M{\pm}SD:71.45{\pm}4.73\;kVp)$ as tube voltage. 2. 87.35 % of the surveyed hospitals had the use of $50\;mAs{\sim}89\;mAs(M{\pm}SD:64.31{\pm}16.21\;mAs)$ as the amount of current. 3. Shallow doses ranged from 2.00 mSv to 4.99 mSv($M{\pm}SD:3.81{\pm}1.01\;mSv$) in 80.46 % of the surveyed hospitals. 4. Exposure dose was directly depended on the tube voltage or the amount of currents.

  • PDF

Brevibacterium flavum의 glutamate dehydrogenase결핍돌연변이주의 분리 및 특성 (Isolation and characterization of glutamate dehydrogenase defective mutant of brevibacterium flavum)

  • 최순영;성하진;민경희
    • 미생물학회지
    • /
    • 제26권2호
    • /
    • pp.93-100
    • /
    • 1988
  • In order to understand the regulation of glutamate dehydrogenase(GDH) synthesis in Brevibacterium flavum, we have isolated a mutant lacking NADP-linked GDH activity by ethlmethane sulfonate treatment. The $gdh^-$ mutant was grown on the minimal plate with 1mM ammonium chloride and not that with 300mM ammonium chloride. The cell-free extracts from $gdh^-$ mutant and prototroph were also examined with glutamine synthetase(GS) and glutamate synthase (GOGAT) production by niteogen sources. The growth of $gdh^-$ mutant in presence of 20mM ammonium chloride means that GOGAT synthesis is sufficient to allow growth in this condition. GS production of $gdh^-$ mutant as well as parental strain was induced by 1mM urea and ammonium tartrate, but it was repressed by higher concentration of ammonia, and also induced by 20mM to 50mM glutamate as a substrate. It was special attention that GOGAT synthesis from $gdh^-$ strain was more repressed by higher concentration of ammonia than prototroph as described in E. coli system.

  • PDF

Candida utilis에 의한 Cytidine 5'-diphosphate Choline의 발효생산 (Fermentative Production of Cytidine 5'-diphosphate Choline by Candida utilis)

  • 이인선;조정일;조규선
    • 동아시아식생활학회지
    • /
    • 제5권3호
    • /
    • pp.233-238
    • /
    • 1995
  • CDP-choline is known as an intermediate of lecithin biosynthesis, and as an important drug for nervous diseases of the brain, For the bioconversion of CMP and choline to CDP-choline, ATP is required as an energy source. In these studies, the biosynthetic reaction of CDP-choline was coupled with ATP regenerating system by glycolysis. As a microorganism containing the highest conversion activity of CMP and choline to CDP-choline, Candida utilis ATCC 42416 was selected. The optimum reaction condition were 50mM choline chloride, 20mM CMP, 100mM potassium phosphate (pH8.0), 300mM glucose, 50mM MgSO4, 10% dried cells with shaking incubation at 3$0^{\circ}C$. The reaction was thus performed for 10 hours under the above optimum conditions. The concentration of CDP-choline was 16mM(80% in conversion ratio).

  • PDF

Plasmid-Mediated Arsenical and Antimonial Resistance Determinants (ars) of Pseudomonas sp. KM20

  • Yoon, Kyung-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.31-38
    • /
    • 2002
  • Bacteria have evolved various types of resistance mechanism to toxic heavy metals, such as arsenic and antimony. An arsenical and antimonial resistant bacterium was isolated from a shallow creek draining a coal-mining area near Taebaek City, in Kangwon-Do, Korea. The isolated bacterium was identified and named as Pseudomonas sp. KM20 after biochemical and physiological studies were conducted. A plasmid was identified and its function was studied. Original cells harboring the plasmid were able to grow in the presence of 15 mM sodium arsenite, while the plasmid-cured (plasmidless) strain was sensitive to as little as 0.5 mM sodium arsenate. These results indicated that the plasmid of Pseudomonas sp. KM20 does indeed encode the arsenic resistance determinant. In growth experiments, prior exposure to 0.1 mM arsenate allowed immediate growth when they were challenged with 5 mM arsenate, 5 mM arsenite, or 0.1 mM antimonite. These results suggested that the arsenate, arsenite, and antimonite resistance determinants of Pseudomonas sp. KM20 plasmid were indeed inducible. When induced, plasmid-bearing resistance cells showed a decreased accumulation $of\;73^As$ and showed an enhanced efflux $of\;^73As$. These results suggested that plasmid encoded a transport system that extruded the toxic metalloids, resulting in the lowering of the intracellular concentration of toxic oxyanion. In a Southern blot study, hybridization with an E. coli R773 arsA-specific probe strongly suggested the absence of an arsA cistron in the plasmid-associated arsenical and antimonial resistance determinant of Pseudomonas sp. KM20.

AlGaAs/InGaAs/GaAs Power PHEMT 설계.제작 (Design and fabrications of AlGaAs/InGaAs/GaAs Power PHEMT)

  • 이응호;조승기;윤용순;이일형;이진구
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 하계종합학술대회 논문집(2)
    • /
    • pp.12-15
    • /
    • 2000
  • In this paper, we have fabricated the PHEMT's with AlGaAs/InGaAs/GaAs and measured characteristics of DC and frequencies. The PHEMT's has a 0.35$\mu\textrm{m}$ gate length, gate width of 60$\mu\textrm{m}$ and 80$\mu\textrm{m}$, and fingers of 2 and 4. From the measurements results for the 60$\mu\textrm{m}$ ${\times}$ 2 PHEMT's, we obtained 1.2V of Vk, -3.5V of Vp, 46mA of Idss, 221mS/mmof gm, and 3.6dB of S$\sub$21/ gain, 45GHz of f$\sub$T,/ 100GHz of fmax. And, in case of 80$\mu\textrm{m}$ ${\times}$ 4 PHEMT's, we obtained 1.2V of Vk, -4.5V of Vp, 125mA of Idss, 198mS/mm of gm, and 2.0dB of S$\sub$21/ gain. 44GHz of f$\sub$T/, 70GHz of fmax at 35GHz frequency. Also, MAG are decreased as a number of finger are Increased.

  • PDF

Conventional UV 리소그라피와 경사각증착에 의한 0.5$mu$m 전력용 CaAs MESFET 제작에 관한 연구 (Studies on fabrication of 0.5$mu$m GaAs power MESFET's using a conventional UV lithography and angle evaporations)

  • 이일형;김상명;윤진섭;이진구
    • 전자공학회논문지A
    • /
    • 제32A권12호
    • /
    • pp.130-135
    • /
    • 1995
  • GaAs power MESFET's with 0.5 .mu.m gate length using a conventional UV lithography and angle evaporations are fabricated and then DC and RF characteristics are measured and carefully analyzed. The 0.5$\mu$m GaAs power MESFET's are fabricated on epi-wafers which have an undoped GaAs layer inbetween n+ and n GaAs layers grown by MBE, and by the processes such as an image reversal(IR), air-bridge, and our developed 0.5 .mu.m gate fabrication techniques. The total gate widths of the fabricated 0.5$\mu$m GaAs power MESFETs are 0.6-3.0 mm, the current saturation of them 80-400 mA, the maximum linear and RF output power of them 60-265 mW. The current gain cut-off frequencies for the 0.5$\mu$m GaAs power MESFETs varies 13-16 GHz. For the test frequency of 10 GHz the maximum unilateral transducer power gains and the power added efficiencies of the GaAs power devices are 7.0-2.5 dB and 35.68-30.76 %, respectively.

  • PDF

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.506-511
    • /
    • 2011
  • Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

Sustainable Production of Dihydroxybenzene Glucosides Using Immobilized Amylosucrase from Deinococcus geothermalis

  • Lee, Hun Sang;Kim, Tae-Su;Parajuli, Prakash;Pandey, Ramesh Prasad;Sohng, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1447-1456
    • /
    • 2018
  • The amylosucrase encoding gene from Deinococcus geothermalis DSM 11300 (DgAS) was codon-optimized and expressed in Escherichia coli. The enzyme was employed for biosynthesis of three different dihydroxybenzene glucosides using sucrose as the source of glucose moiety. The reaction parameters, including temperature, pH, and donor (sucrose) and acceptor substrate concentrations, were optimized to increase the production yield. This study demonstrates the highest ever reported molar yield of hydroquinone glucosides 325.6 mM (88.6 g/l), resorcinol glucosides 130.2 mM (35.4 g/l) and catechol glucosides 284.4 mM (77.4 g/l) when 400 mM hydroquinone, 200 mM resorcinol and 300 mM catechol, respectively, were used as an acceptor substrate. Furthermore, the use of commercially available amyloglucosidase at the end of the transglycosylation reaction minimized the gluco-oligosaccharides, thereby enhancing the target productivity of mono-glucosides. Moreover, the immobilized DgAS on Amicogen LKZ118 beads led to a 278.4 mM (75.8 g/l), 108.8 mM (29.6 g/l) and 211.2 mM (57.5 g/l) final concentration of mono-glycosylated product of hydroquinone, catechol and resorcinol at 35 cycles, respectively, when the same substrate concentration was used as mentioned above. The percent yield of the total glycosides of hydroquinone and catechol varied from 85% to 90% during 35 cycles of reactions in an immobilized system, however, in case of resorcinol the yield was in between 65% to 70%. The immobilized DgAS enhanced the efficiency of the glycosylation reaction and is therefore considered effective for industrial application.

지대별 적산온도와 묘 크기가 당귀의 수량 및 Decursin 함량에 미치는 영향 (Effect of Yield and Decursin Content According to the Accumulative Temperature and Seedling Size in Cultivation Areas of Angelica gigas Nakai)

  • 김영국;안영섭;안태진;여준환;박충범;박호기
    • 한국약용작물학회지
    • /
    • 제17권6호
    • /
    • pp.458-463
    • /
    • 2009
  • This study was conducted to find out some conditions for optimum cultivation of Angelica gigas Nakai by the investigation of root yield and decursin content from different seeding sizes and accumulative temperature. Accumulative temperature from April to October was $4,309^{\circ}C$ on altitude 100 m, $4,242^{\circ}C$ on 250 m, $3,662^{\circ}C$ on 530 m, $3,435^{\circ}C$ on 730 m, and altitude 530~730 m was less $650{\sim}870^{\circ}C$ than altitude 100 m cultivation areas of A. gigas. Seedling stand rate was increased from 86.4% to more than 90% as accumulative temperature decreases, and was increased in above 7 mm of seedling size, and 10% in non-mulching more than PE film mulching. Yield was increased as accumulative temperature decreases and in PE film mulching as 310.2 kg/10a. Also, Yield was increased in 7~9 mm than seedling diameter 5~7 mm as 313.0 kg/10a. Decursin content of primary roots was increased as altitude rises, ie, as 2.55% on altitude 100 m, 3.33% on 250 m, 5.51% on 530 m, and 6.24% on 730 m. Decursinol angelate content appeared little than decursin content as 1.08% on altitude 100 m, 1.37% on 250 m, 1.99% on 530 m, 2.38% on 730 m, and as altitude was heightened, content was increased.