• Title/Summary/Keyword: Lysosome

Search Result 142, Processing Time 0.027 seconds

The effect of intracellular trafficking of CD1d on the formation of TCR repertoire of NKT cells

  • Shin, Jung Hoon;Park, Se-Ho
    • BMB Reports
    • /
    • v.47 no.5
    • /
    • pp.241-248
    • /
    • 2014
  • CD1 molecules belong to non-polymorphic MHC class I-like proteins and present lipid antigens to T cells. Five different CD1 genes (CD1a-e) have been identified and classified into two groups. Group 1 include CD1a-c and present pathogenic lipid antigens to ${\alpha}{\beta}$ T cells reminiscence of peptide antigen presentation by MHC-I molecules. CD1d is the only member of Group 2 and presents foreign and self lipid antigens to a specialized subset of ${\alpha}{\beta}$ T cells, NKT cells. NKT cells are involved in diverse immune responses through prompt and massive production of cytokines. CD1d-dependent NKT cells are categorized upon the usage of their T cell receptors. A major subtype of NKT cells (type I) is invariant NKT cells which utilize invariant $V{\alpha}14-J{\alpha}18$ TCR alpha chain in mouse. The remaining NKT cells (type II) utilize diverse TCR alpha chains. Engineered CD1d molecules with modified intracellular trafficking produce either type I or type II NKT cell-defects suggesting the lipid antigens for each subtypes of NKT cells are processed/generated in different intracellular compartments. Since the usage of TCR by a T cell is the result of antigen-driven selection, the intracellular metabolic pathways of lipid antigen are a key in forming the functional NKT cell repertoire.

Regulation of RIP3 protein stability by PELI1-mediated proteasome-dependent degradation

  • Park, Han-Hee;Morgan, Michael J.;Kang, Ho Chul;Kim, You-Sun
    • BMB Reports
    • /
    • v.51 no.10
    • /
    • pp.484-485
    • /
    • 2018
  • Receptor-interacting protein kinase-3 (RIP3 or RIPK3) is a serine-threonine kinase largely essential for necroptotic cell death; it also plays a role in some inflammatory diseases. High levels of RIP3 are likely sufficient to activate necroptotic and inflammatory pathways downstream of RIP3 in the absence of an upstream stimulus. For example, we have previously detected high levels or RIP3 in the skin of Toxic Epidermal Necrolysis patients; this correlates with increased phosphorylation of MLKL found in these patients. We have long surmised that there are molecular mechanisms to prevent anomalous activity of the RIP3 protein, and so prevent undesirable cell death and inflammatory effects when inappropriately activated. Recent discovery that Carboxyl terminus of Hsp 70-Interacting Protein (CHIP) could mediate ubiquitylation- and lysosome-dependent RIP3 degradation provides a potential protein that has this capacity. However, while screening for RIP3-binding proteins, we discovered that pellino E3 ubiquitin protein ligase 1 (PELI1) also interacts directly with RIP3 protein; further investigation in this study revealed that PELI1 also targets RIP3 for proteasome-dependent degradation. Interestingly, unlike CHIP, which targets RIP3 more generally, PELI1 preferentially targets kinase active RIP3 that has been phosphorylated on T182, subsequently leading to RIP3 degradation.

Emerging Paradigm of Crosstalk between Autophagy and the Ubiquitin-Proteasome System

  • Nam, Taewook;Han, Jong Hyun;Devkota, Sushil;Lee, Han-Woong
    • Molecules and Cells
    • /
    • v.40 no.12
    • /
    • pp.897-905
    • /
    • 2017
  • Cellular protein homeostasis is maintained by two major degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Until recently, the UPS and autophagy were considered to be largely independent systems targeting proteins for degradation in the proteasome and lysosome, respectively. However, the identification of crucial roles of molecular players such as ubiquitin and p62 in both of these pathways as well as the observation that blocking the UPS affects autophagy flux and vice versa has generated interest in studying crosstalk between these pathways. Here, we critically review the current understanding of how the UPS and autophagy execute coordinated protein degradation at the molecular level, and shed light on our recent findings indicating an important role of an autophagy-associated transmembrane protein EI24 as a bridging molecule between the UPS and autophagy that functions by regulating the degradation of several E3 ligases with Really Interesting New Gene (RING)-domains.

An Additional Mechanism for the Cytotoxicity of 2-Chloroethylethyl Sulfide in Spleen Lymphocytes; Lysosomal Labilization

  • Choi, Dae-Sung;Shin, Sung-Ho;Kim, Yun-Bae;Cha, Seung-Hee;Sok, Dai-Eun
    • BMB Reports
    • /
    • v.28 no.1
    • /
    • pp.79-82
    • /
    • 1995
  • Exposure of spleen lymphocytes to 2-chloroethylethyl sulfide (CEES) leads to a reduction of the intracellular ATP level, followed by a decrease in cell viability. Addition of nicotinamide, an inhibitor of poly(ADP-ribose) polymerase (PADPRP), restores both ATP level and viability, indicating that an activation of PADPRP is responsible for the cytotoxicity of CEES. The involvement of a $Ca^{2+}$-mediated process in cytotoxicity is suggested. Verapamil, EGTA, trifluoperazine, and butacaine exhibit a partial protection (20 to 58%) against the cytotoxicity of CEES. Investigation of the causative role of proteolytic degradation in cell death indicate that pepstatin and leupeptin exert a substantial protective effect (60 to 70%), suggesting the involvement of lysosomal destabilization in CEES-induced cytotoxicity. Also, lysosomotropic agents markedly decrease the cytotoxicity. Lysosomal labilization may be a mechanism for the cytotoxicity of CEES.

  • PDF

Metabolic Brain Disease : Leukodystrophy (대사성 뇌 질환)

  • 김인원
    • Proceedings of the KSMRM Conference
    • /
    • 1999.04a
    • /
    • pp.99-108
    • /
    • 1999
  • 선천성 대사 이상은 다양한 뇌질환으로 나타낸다. 일반적으로 이 질환들은 하나 또는 둘이상의 대사경로에 대한 생화학적 이상에 원인이 있다. 정상적 생화학적 산물의 결핍이나 비정상적 산물의 축적에 의한 뇌기능 이상에 의해 임상증상이 나타내게 되는데 그 증상은 대개 경기, 경직성, 발육지연 등으로 비특이적이고 영상소견도 마찬가지로 비특이적이다. 대사 이상에 있어서의 신경병변은 일부 뇌백질을 주로 침범하는 경우를 제외하면 대부분 뇌백질을 침범하고 따라서 일반적으로 일차성 뇌백질 질환이 대사성 뇌질환을 일컫는다고 할 수가 있다. 뇌백질 질환은 뇌백질의 구성원중 가장 큰 부분을 차지하는 수초(myelin)를 침범하는 질환을 일컫는다. 중추신경계의 백질은 수초로 싸여있는 축삭(axon)과 선경교세포 (neuroglial cell) 및 혈관 등으로 구성되어 있으며, 이중 대부분을 수초가 차지하고 이 수초로 인하여 정상 뇌백질이 흰색을 나타낸다. 백질내의 신경교세포로는 성상세포 (astrocyte) 와 핍지세포 (oligodendrocyte)가 있으며 신 경교세포의 가장 중요한 기능은 핍지세포에 의한 축삭의 외피화 (ensheathment) 즉, 수초이다. 수초는 핍지세포의 세포질 돌기 (cytoplasmic process)의 일부이며 따라서 수초의 생존과 대사는 핍지세포와 운명을 같이한다. 일반적으로 세포의 생존, 대사와 가장 관련있는 기능은 세포질내에 함유되어 있는 구조물인 소기관(organelle)에 의하여 수행된다. 따라서, 비록 모든 소기관들이 백질 질환을 이르키는데 직접 연관되어 있지는 않더라도 수초의 생존과 대사에는 핍지세포의 소기관들이 매우 중요한 역할을 하게 된다. 세포질내 중요한 소기관으로는 세포 막, 미토콘드리아 (mitochondria), endoplasmic reticulum, Golgi 체, lysosome, peroxisome 그리고 세포질등이 있으며, 이들중에서 lysosomes, peroxisomes, 그리고 미토콘드리아가 특정한 유전성 백질질환에 중요한 역할을 하는 것이 밝혀졌다. 이러한 질환들은 최소한 각 소기관에 의한 질환군으로 분류될 수 있다.

  • PDF

Effects of Chrysanthemum boreale M. Water Extract on Serum Liver Enzyme Activities and Kupffer Cells of Carbon Tetrachloride-Induced Rats

  • Jeon, Jeong-Ryae;Park, Jyung-Rewng
    • Food Science and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.290-296
    • /
    • 2005
  • Effects of water extract obtained from Chrysanthemum boreale M. (CE) on serum enzyme activities and Kupffer cells of carbon tetrachloride ($CCl_4$)-induced rats were investigated. Thirty-two healthy male Sprague-Dawley rats were divided into normal (N), $CCl_4$-induced (T), CE-supplemented (C), and $CCl_4$-induced and CE-supplemented (TC) groups. $CCl_4$ injection significantly increased aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and alkaline phosphatase activities in serum. Significant increases in total cholesterol and triglyceride concentrations were also observed in $CCl_4$-induced rats. Oral administration of CE at 300 mg/kg body weight significantly decreased serum enzyme levels and suppressed $CCl_4$ hepatotoxicity-induced lipid profile changes. Histological findings showed fatty change, fibrosis and increased number of Kupffer cells in T group. Electron microscopic examination showed increased lysosome content and dilation of rough endoplasmic reticulum within Kupffer cells in T group, whereas CE supplement attenuated liver injury in $CCl_4$-induced liver. These results indicated CE could significantly alleviate CC4-induced hepatotoxicity injury.

Effect of Ginseng Saponin on the Integrity of Lysosomes (인삼사포닌이 Lysosome의 안정성에 미치는 영향)

  • 원광애;정노팔
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.119-127
    • /
    • 1985
  • The effect of ginseng saponin on acid phosphatase (AP) activity in liver Iysosomes was investigated and the mechanism by which ginseng saponin may function on the integrity of Iysosomes was discussed. The experimental results obtained are summarized as follows; 1, A very marked increase in the AP activity was observed in the supernatant of hypotonic medium, as compared with that of isotonic medium, indicating that the hypoosmotic shock per so results in activation through osmotic Iysis of particles. 2. Ginseng saponin had no effect on the activity of AP if once released from Iysosomes when Iysed in the hypotonic medium, suggesting that ginseng saponin has no effect on the enzyme molecules per se. 3. The AP activity in isotonic medium suspensions was decreased at the concentrations of 10-6, 10-5 and 10-4% of ginseng saponin, but increased at 10-2 and 10-1%. It's suggested that ginseng saponin enhances the integrity of Iysosomes at 10-6, 10-5 and 10-4%, but decreases it at 10-2 and 10-1%. 4. Suspending particles in distilled water resulted in no correlation of AP activity with treatment with ginseng saponin. 5, The AP activity was decreased in the presence of ATP, showing the possible significance of ATP as a Iysosomal stabilizer and the possibility that ginseng saponin may affect a membrane bound ATPase system by which Iysosomal AP release may be controlled.

  • PDF

Ultrastructural Alterations of Rabbit Liver after Overdose of Nitrate (질산염과잉투여(窒酸鹽過剩投與)에 의(依)한 간장(肝臟)의 변화(變化)에 관한 전자현미경적연구(電子顯微鏡的硏究))

  • Kim, Soon Bok;Lee, Cha Soo
    • Korean Journal of Veterinary Research
    • /
    • v.16 no.2
    • /
    • pp.141-150
    • /
    • 1976
  • In order to know the morphological changes of liver in nitrate poisoning, the ultrastructural studies were carried out on the rabbit liver after potassium nitrate was administered orally at lethal dose, in single treatment, as acute case and at two different levels. 1.0 and 0.5g/kg of body weight daily for 43 and 60 days as chronic case, respectively, The results were summarized as followings: 1. In the hepatic cells of acute case, mitochondria were swollen, disappearance of cristae and variable in shape. Dilatation of rough endoplasmic reticulum and vacuoles containing degenerated cell organells were observed. Glyogen particles were decreased in number. Degenerated Kupffer cells were often seen in acute case. 2. In the hepatic cells of chronic case, there were increase of smooth endoplasmic reticulum, marked enlargement of rough endcplasmic reticulum, detachment of membrane bound ribosome and some rough endoplasmic reticulum changed into smooth endoplasmic reticulum. Secondary lysosome, abundant glycogen paricles and myelin-figure structures were also observed in the cytoplasm of the hepatic cells. The endothelial cells were proliferated in the area of the necrotic cells.

  • PDF

The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease

  • Shin, Woo Hyun;Park, Joon Hyung;Chung, Kwang Chul
    • BMB Reports
    • /
    • v.53 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The ubiquitin-proteasome system (UPS) and autophagy are two major degradative pathways of proteins in eukaryotic cells. As about 30% of newly synthesized proteins are known to be misfolded under normal cell conditions, the precise and timely operation of the UPS and autophagy to remove them as well as their tightly controlled regulation, is so important for proper cell function and survival. In the UPS, target proteins are labeled by small proteins called ubiquitin, which are then transported to the proteasome complex for degradation. Alternatively, many greatly damaged proteins are believed to be delivered to the lysosome for autophagic degradation. Although these autophagy and UPS pathways have not been considered to be directly related, many recent studies proposed their close link and dynamic interconversion. In this review, we'll focus on the several regulatory molecules that function in both UPS and autophagy and their crosstalk. Among the proposed multiple modulators, we will take a closer look at the so-called main connector of UPS-autophagy regulation, p62. Last, the functional role of p62 in the mitophagy and its implication for the pathogenesis of Parkinson's disease, one of the major neurodegenerative diseases, will be briefly reviewed.

Pathological studies on exudative epidermitis in experimentally infected pigs II. Immunohistochemistry and electron microscopy on the skin (실험적 돼지 삼출성 표피염에 관한 병리학적 연구 II. 피부의 면역조직화학적 및 전자현미경적 관찰)

  • Oh, Kyu-shil;Lee, Cha-soo
    • Korean Journal of Veterinary Research
    • /
    • v.35 no.3
    • /
    • pp.553-562
    • /
    • 1995
  • To elucidate pathologic change of skin in porcine exudative epidermitis, immunohistochemical and electron microscopical observations were carried out in the skin of the suckling pigs inoculated with Staphylococcus hyicus subsp hyicus which were isolated from natural case. In immunohistochemistry, ATPase-positive dendritic cells were more populated in epidermo-dermal junctional areas and perivascular area in dermis than in epidermal area as the disease was proceeded. These dendritic cells were identified as Langerhans cell by immunoperoxidase staining and these cells were populated granulomatous bodies. Electron microscopical study showed various retrogressive degeneration and vacuolation of epidermal cell organelles with retention of amorphorous exudates in intercellular space, and cellular seperation. Langerhans cells present in intercellular space of epidermis were populated in epidermo-dermal junctional areas, in dermis, and around granulomatous bodies. Langerhans cells contained decreased Birbeck granules in number but increased lysosome and ribosome. These cells were in contact with lymphocytes. This study was discussed relation between the various immunocytes and the formation of granulomatous bodies, and this inflammation was considered as delayed type hypersensitivity.

  • PDF