DOI QR코드

DOI QR Code

Emerging Paradigm of Crosstalk between Autophagy and the Ubiquitin-Proteasome System

  • Nam, Taewook (Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University) ;
  • Han, Jong Hyun (Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University) ;
  • Devkota, Sushil (Section of Cell and Developmental Biology, University of California San Diego) ;
  • Lee, Han-Woong (Department of Biochemistry, College of Life Science and Biotechnology and Yonsei Laboratory Animal Research Center, Yonsei University)
  • Received : 2017.09.26
  • Accepted : 2017.11.23
  • Published : 2017.12.31

Abstract

Cellular protein homeostasis is maintained by two major degradation pathways, namely the ubiquitin-proteasome system (UPS) and autophagy. Until recently, the UPS and autophagy were considered to be largely independent systems targeting proteins for degradation in the proteasome and lysosome, respectively. However, the identification of crucial roles of molecular players such as ubiquitin and p62 in both of these pathways as well as the observation that blocking the UPS affects autophagy flux and vice versa has generated interest in studying crosstalk between these pathways. Here, we critically review the current understanding of how the UPS and autophagy execute coordinated protein degradation at the molecular level, and shed light on our recent findings indicating an important role of an autophagy-associated transmembrane protein EI24 as a bridging molecule between the UPS and autophagy that functions by regulating the degradation of several E3 ligases with Really Interesting New Gene (RING)-domains.

Keywords

References

  1. Araki, K., and Nagata, K. (2011). Protein folding and quality control in the ER. Cold Spring Harb. Perspect. Biol. 3, a007526.
  2. Ardley, H.C., and Robinson, P.A. (2005). E3 ubiquitin ligases. Essays Biochem. 41, 15-30. https://doi.org/10.1042/bse0410015
  3. B'Chir, W., Maurin, A.C., Carraro, V., Averous, J., Jousse, C., Muranishi, Y., Parry, L., Stepien, G., Fafournoux, P., and Bruhat, A. (2013). The eIF2alpha/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res. 41, 7683-7699. https://doi.org/10.1093/nar/gkt563
  4. Boucas, J., Fritz, C., Schmitt, A., Riabinska, A., Thelen, L., Peifer, M., Leeser, U., Nuernberg, P., Altmueller, J., Gaestel, M., et al. (2015). Label-free protein-RNA interactome znalysis identifies Khsrp signaling downstream of the p38/Mk2 kinase complex as a critical modulator of cell cycle progression. PLoS One 10, e0125745. https://doi.org/10.1371/journal.pone.0125745
  5. Budenholzer, L., Cheng, C.L., Li, Y., and Hochstrasser, M. (2017). Proteasome structure and Assembly. J. Mol. Biol. 429, 3500-3524. https://doi.org/10.1016/j.jmb.2017.05.027
  6. Cha-Molstad, H., Sung, K.S., Hwang, J., Kim, K.A., Yu, J.E., Yoo, Y.D., Jang, J.M., Han, D.H., Molstad, M., Kim, J.G., et al. (2015). Aminoterminal arginylation targets endoplasmic reticulum chaperone BiP for autophagy through p62 binding. Nat. Cell Biol. 17, 917-929. https://doi.org/10.1038/ncb3177
  7. Cha-Molstad, H., Yu, J.E., Feng, Z., Lee, S.H., Kim, J.G., Yang, P., Han, B., Sung, K.W., Yoo, Y.D., Hwang, J., et al. (2017). p62/SQSTM1/Sequestosome-1 is an N-recognin of the N-end rule pathway which modulates autophagosome biogenesis. Nat. Commun. 8, 102. https://doi.org/10.1038/s41467-017-00085-7
  8. Chan, N.C., Salazar, A.M., Pham, A.H., Sweredoski, M.J., Kolawa, N.J., Graham, R.L., Hess, S., and Chan, D.C. (2011). Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20, 1726-1737. https://doi.org/10.1093/hmg/ddr048
  9. Choi, J.M., Devkota, S., Sung, Y.H., and Lee, H.W. (2013). EI24 regulates epithelial-to-mesenchymal transition and tumor progression by suppressing TRAF2-mediated NF-kappaB activity. Oncotarget 4, 2383-2396.
  10. Chude, C.I., and Amaravadi, R.K. (2017). Targeting autophagy in cancer: update on clinical trials and novel inhibitors. Int. J. Mol. Sci. 18.
  11. Ciechanover, A. (2005). Proteolysis: from the lysosome to ubiquitin and the proteasome. Nat. Rev. Mol. Cell Biol. 6, 79-87. https://doi.org/10.1038/nrm1552
  12. Cohen-Kaplan, V., Livneh, I., Avni, N., Cohen-Rosenzweig, C., and Ciechanover, A. (2016). The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int. J. Biochem. Cell. Biol. 79, 403-418. https://doi.org/10.1016/j.biocel.2016.07.019
  13. Collins, G.A., and Goldberg, A.L. (2017). The logic of the 26S proteasome. Cell 169, 792-806. https://doi.org/10.1016/j.cell.2017.04.023
  14. Crick, F. (1970). Central dogma of molecular biology. Nature 227, 561-563. https://doi.org/10.1038/227561a0
  15. Crighton, D., Wilkinson, S., O'Prey, J., Syed, N., Smith, P., Harrison, P.R., Gasco, M., Garrone, O., Crook, T., and Ryan, K.M. (2006). DRAM, a p53-induced modulator of autophagy, is critical for apoptosis. Cell 126, 121-134. https://doi.org/10.1016/j.cell.2006.05.034
  16. de Bie, P., and Ciechanover, A. (2011). Ubiquitination of E3 ligases: self-regulation of the ubiquitin system via proteolytic and nonproteolytic mechanisms. Cell Death Differ. 18, 1393-1402. https://doi.org/10.1038/cdd.2011.16
  17. Devkota, S., Sung, Y.H., Choi, J.M., Lee, J., Ha, N.Y., Kim, H., Cho, B.C., Song, J., and Lee, H.W. (2012). Ei24-deficiency attenuates protein kinase Calpha signaling and skin carcinogenesis in mice. Int. J. Biochem. Cell Biol. 44, 1887-1896. https://doi.org/10.1016/j.biocel.2012.06.034
  18. Devkota, S., Jeong, H., Kim, Y., Ali, M., Roh, J.I., Hwang, D., and Lee, H.W. (2016). Functional characterization of EI24-induced autophagy in the degradation of RING-domain E3 ligases. Autophagy 12, 2038-2053. https://doi.org/10.1080/15548627.2016.1217371
  19. Dikic, I. (2017). Proteasomal and autophagic degradation systems. Annu. Rev. Biochem. 86, 193-224. https://doi.org/10.1146/annurev-biochem-061516-044908
  20. Feng, Y., He, D., Yao, Z., and Klionsky, D.J. (2014). The machinery of macroautophagy. Cell Re.s 24, 24-41. https://doi.org/10.1038/cr.2013.168
  21. Gomes, L.C., Di Benedetto, G., and Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 13, 589-598. https://doi.org/10.1038/ncb2220
  22. Groll, M. and Huber, R. (2003). Substrate access and processing by the 20S proteasome core particle. Int. J. Biochem. Cell Biol. 35, 606-616. https://doi.org/10.1016/S1357-2725(02)00390-4
  23. Gurusamy, N., Lekli, I., Gherghiceanu, M., Popescu, L.M., and Das, D.K. (2009). BAG-1 induces autophagy for cardiac cell survival. Autophagy 5, 120-121. https://doi.org/10.4161/auto.5.1.7303
  24. Hershko, A. (2005). The ubiquitin system for protein degradation and some of its roles in the control of the cell-division cycle (Nobel lecture). Angew. Chem. Int. Ed. Engl. 44, 5932-5943. https://doi.org/10.1002/anie.200501724
  25. Hershko, A., Heller, H., Elias, S., and Ciechanover, A. (1983). Components of ubiquitin-protein ligase system. Resolution, affinity purification, and role in protein breakdown. J. Biol. Chem. 258, 8206-8214.
  26. Hewitt, G., Carroll, B., Sarallah, R., Correia-Melo, C., Ogrodnik, M., Nelson, G., Otten, E.G., Manni, D., Antrobus, R., Morgan, B.A., et al. (2016). SQSTM1/p62 mediates crosstalk between autophagy and the UPS in DNA repair. Autophagy 12, 1917-1930. https://doi.org/10.1080/15548627.2016.1210368
  27. Houck, S.A., Ren, H.Y., Madden, V.J., Bonner, J.N., Conlin, M.P., Janovick, J.A., Conn, P.M., and Cyr, D.M. (2014). Quality control autophagy degrades soluble ERAD-resistant conformers of the misfolded membrane protein GnRHR. Mol. Cell 54, 166-179. https://doi.org/10.1016/j.molcel.2014.02.025
  28. Hwang, D., Stephanopoulos, G., and Chan, C. (2004). Inverse modeling using multi-block PLS to determine the environmental conditions that provide optimal cellular function. Bioinformatics 20, 487-499. https://doi.org/10.1093/bioinformatics/btg433
  29. Jiang, T., Harder, B., Rojo de la Vega, M., Wong, P.K., Chapman, E. ,and Zhang, D.D. (2015). p62 links autophagy and Nrf2 signaling. Free Radic. Biol. Med. 88, 199-204. https://doi.org/10.1016/j.freeradbiomed.2015.06.014
  30. Kirkin, V., McEwan, D.G., Novak, I., and Dikic, I. (2009). A role for ubiquitin in selective autophagy. Mol. Cell 34, 259-269. https://doi.org/10.1016/j.molcel.2009.04.026
  31. Klionsky, D.J., Abeliovich, H., Agostinis, P., Agrawal, D.K., Aliev, G., Askew, D.S., Baba, M., Baehrecke, E.H., Bahr, B.A., Ballabio, A., et al. (2008). Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151-175. https://doi.org/10.4161/auto.5338
  32. Komatsu, M., Waguri, S., Ueno, T., Iwata, J., Murata, S., Tanida, I., Ezaki, J., Mizushima, N., Ohsumi, Y., Uchiyama, Y., et al. (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J. Cell Biol. 169, 425-434. https://doi.org/10.1083/jcb.200412022
  33. Komatsu, M., Waguri, S., Koike, M., Sou, Y.S., Ueno, T., Hara, T., Mizushima, N., Iwata, J., Ezaki, J., Murata, S., et al. (2007). Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131, 1149-1163. https://doi.org/10.1016/j.cell.2007.10.035
  34. Korolchuk, V.I., Mansilla, A., Menzies, F.M., and Rubinsztein, D.C. (2009a). Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. Mol. Cell 33, 517-527. https://doi.org/10.1016/j.molcel.2009.01.021
  35. Korolchuk, V.I., Menzies, F.M., and Rubinsztein, D.C. (2009b). A novel link between autophagy and the ubiquitin-proteasome system. Autophagy 5, 862-863. https://doi.org/10.4161/auto.8840
  36. Korolchuk, V.I., Menzies, F.M., and Rubinsztein, D.C. (2010). Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett. 584, 1393-1398. https://doi.org/10.1016/j.febslet.2009.12.047
  37. Kriegenburg, F., Jakopec, V., Poulsen, E.G., Nielsen, S.V., Roguev, A., Krogan, N., Gordon, C., Fleig, U., and Hartmann-Petersen, R. (2014). A chaperone-assisted degradation pathway targets kinetochore proteins to ensure genome stability. PLoS Genet. 10, e1004140. https://doi.org/10.1371/journal.pgen.1004140
  38. Kwon, Y.T., and Ciechanover, A. (2017). The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 42, 873-886. https://doi.org/10.1016/j.tibs.2017.09.002
  39. Labbadia, J., and Morimoto, R.I. (2015). The biology of proteostasis in aging and disease. Annu. Rev. Biochem. 84, 435-464. https://doi.org/10.1146/annurev-biochem-060614-033955
  40. Lamb, C.A., Yoshimori, T., and Tooze, S.A. (2013). The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759-774. https://doi.org/10.1038/nrm3696
  41. Lee, J., Giordano, S., and Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523-540. https://doi.org/10.1042/BJ20111451
  42. Lilienbaum, A. (2013). Relationship between the proteasomal system and autophagy. Int. J. Biochem. Mol. Biol. 4, 1-26.
  43. Liu, W.J., Ye, L., Huang, W.F., Guo, L.J., Xu, Z.G., Wu, H.L., Yang, C., and Liu, H.F. (2016). p62 links the autophagy pathway and the ubiqutin-proteasome system upon ubiquitinated protein degradation. Cell Mol. Biol. Lett. 21, 29. https://doi.org/10.1186/s11658-016-0031-z
  44. Livneh, I., Cohen-Kaplan, V., Cohen-Rosenzweig, C., Avni, N., and Ciechanover, A. (2016). The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 26, 869-885. https://doi.org/10.1038/cr.2016.86
  45. Marshall, R.S., Li, F., Gemperline, D.C., Book, A.J., and Vierstra, R.D. (2015). Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in Arabidopsis. Mol. Cell 58, 1053-1066. https://doi.org/10.1016/j.molcel.2015.04.023
  46. Metzger, M.B., Pruneda, J.N., Klevit, R.E., and Weissman, A.M. (2014). RING-type E3 ligases: master manipulators of E2 ubiquitinconjugating enzymes and ubiquitination. Biochim. Biophys. Acta 1843, 47-60. https://doi.org/10.1016/j.bbamcr.2013.05.026
  47. Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005). ERAD: the long road to destruction. Nat. Cell Biol. 7, 766-772. https://doi.org/10.1038/ncb0805-766
  48. Mizushima, N. (2007). Autophagy: process and function. Genes Dev. 21, 2861-2873. https://doi.org/10.1101/gad.1599207
  49. Mizushima, N., and Levine, B. (2010). Autophagy in mammalian development and differentiation. Nat. Cell Biol. 12, 823-830. https://doi.org/10.1038/ncb0910-823
  50. Moreau, K., Renna, M., and Rubinsztein, D.C. (2013). Connections between SNAREs and autophagy. Trends Biochem. Sci. 38, 57-63. https://doi.org/10.1016/j.tibs.2012.11.004
  51. Nakatogawa, H. (2013). Two ubiquitin-like conjugation systems that mediate membrane formation during autophagy. Essays Biochem. 55, 39-50. https://doi.org/10.1042/bse0550039
  52. Nandi, D., Tahiliani, P., Kumar, A., and Chandu, D. (2006). The ubiquitin-proteasome system. .J Biosci. 31, 137-155. https://doi.org/10.1007/BF02705243
  53. Ohsumi, Y. (2014). Historical landmarks of autophagy research. Cell Res. 24, 9-23. https://doi.org/10.1038/cr.2013.169
  54. Pandey, U.B., Nie, Z., Batlevi, Y., McCray, B.A., Ritson, G.P., Nedelsky, N.B., Schwartz, S.L., DiProspero, N.A., Knight, M.A., Schuldiner, O., et al. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 447, 859-863.
  55. Park, C., and Cuervo, A.M. (2013). Selective autophagy: talking with the UPS. Cell Biochem. Biophys. 67, 3-13. https://doi.org/10.1007/s12013-013-9623-7
  56. Park, M.C., Jeong, H., Son, S.H., Kim, Y., Han, D., Goughnour, P.C., Kang, T., Kwon, N.H., Moon, H.E., Paek, S.H., et al. (2016). Novel morphologic and genetic analysis of cancer cells in a 3D microenvironment identifies STAT3 as a regulator of tumor permeability barrier function. Cancer Res. 76, 1044-1054. https://doi.org/10.1158/0008-5472.CAN-14-2611
  57. Pickart, C.M. (2004). Back to the future with ubiquitin. Cell 116, 181-190. https://doi.org/10.1016/S0092-8674(03)01074-2
  58. Ravikumar, B., Sarkar, S., Davies, J.E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z.W., Jimenez-Sanchez, M., Korolchuk, V.I., Lichtenberg, M., Luo, S., et al. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev. 90, 1383-1435. https://doi.org/10.1152/physrev.00030.2009
  59. Ruan, L., Zhou, C., Jin, E., Kucharavy, A., Zhang, Y., Wen, Z., Florens, L., and Li, R. (2017). Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature 543, 443-446. https://doi.org/10.1038/nature21695
  60. Russell, R.C., Yuan, H.X., and Guan, K.L. (2014). Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57. https://doi.org/10.1038/cr.2013.166
  61. Schmidt, M., and Finley, D. (2014). Regulation of proteasome activity in health and disease. Biochim. Biophys. Acta 1843, 13-25. https://doi.org/10.1016/j.bbamcr.2013.08.012
  62. Schreiber, A., and Peter, M. (2014). Substrate recognition in selective autophagy and the ubiquitin-proteasome system. Biochim. Biophys. Acta 1843, 163-181. https://doi.org/10.1016/j.bbamcr.2013.03.019
  63. Shen, Y.F., Tang, Y., Zhang, X.J., Huang, K.X., and Le, W.D. (2013). Adaptive changes in autophagy after UPS impairment in Parkinson's disease. Acta Pharmacol. Sin. 34, 667-673. https://doi.org/10.1038/aps.2012.203
  64. Sriram, S.M., Kim, B.Y., and Kwon, Y.T. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12, 735-747. https://doi.org/10.1038/nrm3217
  65. Streich, F.C., Jr., and Lima, C.D. (2014). Structural and functional insights to ubiquitin-like protein conjugation. Annu. Rev. Biophys. 43, 357-379. https://doi.org/10.1146/annurev-biophys-051013-022958
  66. Suzuki, K., and Ohsumi, Y. (2007). Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett. 581, 2156-2161. https://doi.org/10.1016/j.febslet.2007.01.096
  67. Tai, H.C., and Schuman, E.M. (2008). Ubiquitin, the proteasome and protein degradation in neuronal function and dysfunction. Nat. Rev. Neurosci. 9, 826-838. https://doi.org/10.1038/nrn2499
  68. Tang, F., Wang, B., Li, N., Wu, Y., Jia, J., Suo, T., Chen, Q., Liu, Y.J., and Tang, J. (2011). RNF185, a novel mitochondrial ubiquitin E3 ligase, regulates autophagy through interaction with BNIP1. PLoS One 6, e24367. https://doi.org/10.1371/journal.pone.0024367
  69. Thrower, J.S., Hoffman, L., Rechsteiner, M., and Pickart, C.M. (2000). Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94-102. https://doi.org/10.1093/emboj/19.1.94
  70. Tooze, S.A., and Dikic, I. (2016). Autophagy captures the nobel prize. Cell 167, 1433-1435. https://doi.org/10.1016/j.cell.2016.11.023
  71. Wang, C., and Wang, X. (2015). The interplay between autophagy and the ubiquitin-proteasome system in cardiac proteotoxicity. Biochim. Biophys. Acta 1852, 188-194. https://doi.org/10.1016/j.bbadis.2014.07.028
  72. Watson, J.D., and Crick, F.H. (2003). Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. 1953. Rev. Invest. Clin. 55, 108-109.
  73. Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol. Cell 30, 678-688. https://doi.org/10.1016/j.molcel.2008.06.001
  74. Youle, R.J., and Narendra, D.P. (2011). Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12, 9-14.
  75. Zhao, J., Brault, J.J., Schild, A., Cao, P., Sandri, M., Schiaffino, S., Lecker, S.H., and Goldberg, A.L. (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab. 6, 472-483. https://doi.org/10.1016/j.cmet.2007.11.004
  76. Zhao, Y.G., Zhao, H., Miao, L., Wang, L., Sun, F., and Zhang, H. (2012). The p53-induced gene Ei24 is an essential component of the basal autophagy pathway. J. Biol. Chem. 287, 42053-42063. https://doi.org/10.1074/jbc.M112.415968
  77. Zhao, B., Qiang, L., Joseph, J., Kalyanaraman, B., Viollet, B., and He, Y.Y. (2016). Mitochondrial dysfunction activates the AMPK signaling and autophagy to promote cell survival. Genes Dis. 3, 82-87. https://doi.org/10.1016/j.gendis.2015.12.002
  78. Zhou, J., Zhang, Y., Qi, J., Chi, Y., Fan, B., Yu, J.Q., and Chen, Z. (2014). E3 ubiquitin ligase CHIP and NBR1-mediated selective autophagy protect additively against proteotoxicity in plant stress responses. PLoS Genet. 10, e1004116. https://doi.org/10.1371/journal.pgen.1004116

Cited by

  1. Fine-tuning the ubiquitin-proteasome system to treat pulmonary fibrosis pp.1607-8438, 2018, https://doi.org/10.1080/03008207.2018.1529174
  2. Age and Age-Related Diseases: Role of Inflammation Triggers and Cytokines vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.00586
  3. Caloric restriction rescues yeast cells from alpha-synuclein toxicity through autophagic control of proteostasis vol.10, pp.12, 2017, https://doi.org/10.18632/aging.101675
  4. Emerging Concepts and Functions of Autophagy as a Regulator of Synaptic Components and Plasticity vol.8, pp.1, 2019, https://doi.org/10.3390/cells8010034
  5. Is Autophagy Involved in the Diverse Effects of Antidepressants? vol.8, pp.1, 2017, https://doi.org/10.3390/cells8010044
  6. Functional Characterization of Ubiquitin-Like Core Autophagy Protein ATG12 in Dictyostelium discoideum vol.8, pp.1, 2017, https://doi.org/10.3390/cells8010072
  7. Interplay between Autophagy and the Ubiquitin-Proteasome System and Its Role in the Pathogenesis of Age-Related Macular Degeneration vol.20, pp.1, 2017, https://doi.org/10.3390/ijms20010210
  8. Impact of Autophagy and Aging on Iron Load and Ferritin in Drosophila Brain vol.7, pp.None, 2019, https://doi.org/10.3389/fcell.2019.00142
  9. Proteasome Inhibition Activates Autophagy-Lysosome Pathway Associated With TFEB Dephosphorylation and Nuclear Translocation vol.7, pp.None, 2017, https://doi.org/10.3389/fcell.2019.00170
  10. The Role of Primary Cilia in the Crosstalk between the Ubiquitin–Proteasome System and Autophagy vol.8, pp.3, 2017, https://doi.org/10.3390/cells8030241
  11. Oligomer Model of PB1 Domain of p62/SQSTM1 Based on Crystal Structure of Homo-Dimer and Calculation of Helical Characteristics vol.42, pp.10, 2019, https://doi.org/10.14348/molcells.2019.0096
  12. Knockdown of USP14 inhibits PDGF-BB-induced vascular smooth muscle cell dedifferentiation via inhibiting mTOR/P70S6K signaling pathway vol.9, pp.63, 2017, https://doi.org/10.1039/c9ra04726c
  13. MK5 Regulates YAP Stability and Is a Molecular Target in YAP-Driven Cancers vol.79, pp.24, 2017, https://doi.org/10.1158/0008-5472.can-19-1339
  14. Prognostic implications of autophagy-associated gene signatures in non-small cell lung cancer vol.11, pp.23, 2017, https://doi.org/10.18632/aging.102544
  15. The central regulator p62 between ubiquitin proteasome system and autophagy and its role in the mitophagy and Parkinson's disease vol.53, pp.1, 2017, https://doi.org/10.5483/bmbrep.2020.53.1.283
  16. Selective degradation of IKKα by autophagy is essential for arsenite-induced cancer cell apoptosis vol.11, pp.4, 2017, https://doi.org/10.1038/s41419-020-2420-5
  17. Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum vol.9, pp.5, 2017, https://doi.org/10.3390/cells9051179
  18. Selective Autophagy Maintains the Aryl Hydrocarbon Receptor Levels in HeLa Cells: A Mechanism That Is Dependent on the p23 Co-Chaperone vol.21, pp.10, 2017, https://doi.org/10.3390/ijms21103449
  19. Mechanisms Regulating the UPS-ALS Crosstalk: The Role of Proteaphagy vol.25, pp.10, 2017, https://doi.org/10.3390/molecules25102352
  20. Tissue-Specific Impact of Autophagy Genes on the Ubiquitin–Proteasome System in C. elegans vol.9, pp.8, 2017, https://doi.org/10.3390/cells9081858
  21. The Roles of Ubiquitin in Mediating Autophagy vol.9, pp.9, 2020, https://doi.org/10.3390/cells9092025
  22. EI24 alleviates renal interstitial fibrosis through inhibition of epithelial‐mesenchymal transition and fibroblast activation vol.35, pp.1, 2017, https://doi.org/10.1096/fj.202002089r
  23. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1 vol.17, pp.1, 2017, https://doi.org/10.1080/15548627.2020.1797280
  24. Molecular Mechanisms of Autophagy Regulation in Plants and Their Applications in Agriculture vol.11, pp.None, 2017, https://doi.org/10.3389/fpls.2020.618944
  25. PROTAC: An Effective Targeted Protein Degradation Strategy for Cancer Therapy vol.12, pp.None, 2017, https://doi.org/10.3389/fphar.2021.692574
  26. The Neurochaperonopathies: Anomalies of the Chaperone System with Pathogenic Effects in Neurodegenerative and Neuromuscular Disorders vol.11, pp.3, 2017, https://doi.org/10.3390/app11030898
  27. Knockdown of Claudin-19 in the Retinal Pigment Epithelium Is Accompanied by Slowed Phagocytosis and Increased Expression of SQSTM1 vol.62, pp.2, 2021, https://doi.org/10.1167/iovs.62.2.14
  28. Co-Transmission of Alpha-Synuclein and TPPP/p25 Inhibits Their Proteolytic Degradation in Human Cell Models vol.8, pp.None, 2017, https://doi.org/10.3389/fmolb.2021.666026
  29. Biogenic amine neurotransmitters promote eicosanoid production and protein homeostasis vol.22, pp.3, 2017, https://doi.org/10.15252/embr.202051063
  30. Gastrodin ameliorates learning and memory impairment in rats with vascular dementia by promoting autophagy flux via inhibition of the Ca2+/CaMKII signal pathway vol.13, pp.7, 2021, https://doi.org/10.18632/aging.202667
  31. Ubiquitination and Deubiquitination in Oral Disease vol.22, pp.11, 2021, https://doi.org/10.3390/ijms22115488
  32. Targeting Lysosomes to Reverse Hydroquinone-Induced Autophagy Defects and Oxidative Damage in Human Retinal Pigment Epithelial Cells vol.22, pp.16, 2021, https://doi.org/10.3390/ijms22169042
  33. ATG101 Degradation by HUWE1-Mediated Ubiquitination Impairs Autophagy and Reduces Survival in Cancer Cells vol.22, pp.17, 2017, https://doi.org/10.3390/ijms22179182
  34. VPS35 Downregulation Alters Degradation Pathways in Neuronal Cells vol.84, pp.3, 2021, https://doi.org/10.3233/jad-210701
  35. Exosomal circRNA as a novel potential therapeutic target for multiple myeloma-related myocardial damage vol.21, pp.1, 2017, https://doi.org/10.1186/s12935-021-02011-w
  36. Ursolic acid ameliorates amyloid β-induced pathological symptoms in Caenorhabditis elegans by activating the proteasome vol.88, pp.None, 2017, https://doi.org/10.1016/j.neuro.2021.12.004