• Title/Summary/Keyword: Lysosome

Search Result 142, Processing Time 0.03 seconds

CHANGES IN THE SHAPE AND ULTRASTRUCTURE OF THE ARTICULAR DISC OF THE RAT MANDIBULAR JOINT WITH AGING (가령에 따른 백서 악관절 원판의 형태 및 미세구조적 변화)

  • Suh, Hye-Kyung;Kyung, Hee-Moon;Sung, Jae-Hyun;Bae, Yong-Chul
    • The korean journal of orthodontics
    • /
    • v.24 no.2
    • /
    • pp.331-348
    • /
    • 1994
  • The purpose of this study was to investigate changes in the shape and ultrastructure of the articular disc of the rat mandibular joint with aging. Mechanical stress applied to the articular disc changes during neonatal, suckling, juvenile, adult and senile stages. Mandibular joints of 6 groups of rats(1-, 7-, 17-, 27-, 55-day and over-1-year groups) were removed en bloc and processed for light and electro microscopic study. The changes in the shape of articular disc were examined by light microscope in each group. Structural and ultrastructural changes in the articular disc were examined by light and electron microscope in each group. The results were as follows : In the 1-day and 7-day groups, the articular disc was long and slender in shape and the articular disc was not fitted with the shape of the mandibular fossa and condyle. However' after that time, the anterior and posterior portions of the articular disc were more bulged and the middle portion was shorter and biconcave. Thus the articular disc was well fitted with the shape of the mandibular fossa and condyle. The cell density decreased with aging. In the l -day and 7-day groups, the Golgi apparatus, rough endoplasmic reticulum and free ribosome, which are involved in the synthesis of intracellular and extracellular matrix, were developed. In the 17-day, 27-day and 55-day groups, not only the cell organelles involved in the synthesis of the intracellular and extracellular matrix but also the cell organelles involved in the remodeling of the extracellular matrix(i.e., finger-like cell process, lysosome and mitochondria)were well developed. With advancing age, intracytoplasmic microfilaments were more accumulated and condroid cells increased. In the over-1-year group, the majority of cells of the articular disc were chondroid cells. The majority of cytoplasmic compartment were filled with intracytoplasmic microfilaments and cell organelles were not developed. Therefore, metabolic activities of the cell was markedly reduced and cells contained structures enduring mechanical stress, and cells which were in the process of degeneration were observed occasionally.

  • PDF

Some Observations on the Organelles Participating in the Biliary Excretion in the Hepatocyte of the Biligrafin Injected Mouse (Biligrafin 투여 마우스 간세포의 미세구조적 및 세포화학적 연구)

  • Kim, Hyang;Shin, Young-Chul
    • Applied Microscopy
    • /
    • v.23 no.2
    • /
    • pp.53-77
    • /
    • 1993
  • In this study, an attempt was made to investigate the probable organelles participating in the secretion of biligrafin. The animals (ICR male mice, 25-30gm) were divided into normal control and 6 biligrafin injected groups to which 30% biligrafin (0.006ml/gm b.w.) were injected at 10, 20, 40, 80, 160 and 320 min prior to the sampling. The mice of each group were perfused through the heart with ice-cold 2.5% glutaraldehyde buffered with 0.1M Na-cacodylate (pH. 7.4) under the Na-pentobarbital (Nembtal 0.0015mg/gm b.w.) anesthesia and liver tissues were taken from each group. Some specimens were immersed 1 hr in the same solution used in the perfusion. After an overnight rinse in 0.1M Na-cacodylate buffer containing 10% DMSO and 7.6% sucrose, $75{\mu}m$ fronzen sections were made for cytochemical study. The sections were incubated in thiamin pyrophosphatase (TPPase) and inosine diphosphatase (ID Pase) media for 70 min at $37^{\circ}C$ respectively and acid phosphatase (AcPase) medium for 40 min at $37^{\circ}C$. They were postfixed in 1 % $OsO_4$ for 1 hr. The other specimens were immersed for 8 hrs in the fixative consisting of 2.5% glutaraldehyde and 3.0% paraformaldehyde buffered with Na-cacodylate (pH. 7.4). All of the osmificated specimens were processed for electron microscopy. In both normal and biligrafin injected groups, endoplasmic reticulum (ER), vacuoles, Golgi apparatus and lysosomes were seen in the vicinity of bile canaliculus. In the biligrafin injected groups, however, the Golgi apparatus appeared to be decreased and ER and vacuoles were dilated and increased. The rough endoplasmic reticulum (RER) having a few attached ribosomes appeared to be the round saccule, especially at 20 min after biligrafin injection. Smooth endoplasmic reticulum (SER) seemed to be formed by the detachment of ribosomes at the cisternal end of RER. The cistern of SER showed saccules which probably budded off to form the vacuole. The vacuoles were devoid of visible centents. This finding seemed to be in agreement with the biochemical property of the bile constituents. The fusion between the vacuoles and bile canaliculus were frequently seen in the groups injected with biligrafin. The lysosome did not show any changes in the biligrafin injected groups. Accumulation of some material and lipid droplets were seen at the 40 and 80 min after biligrafin injection, especially at the latter. At 160 and 320 min after biligrafin injections, however, they were decreased successively while the RER stack, free ribosomes and polysomes were increased. Although the reactive products of TPPase and IDPase were observed in the ER saccules and vesicles of the normal control and biligrafin injected groups, the fusion between the bile canaliculus and saccules or vesicles could easily be seen in the latter. The AcPase activity, however, was observed in the cistern at the maturing face of Golgi apparatus and lysosomes in both normal and biligrafin groups. The results suggest that the biligrafin is excreted via the vesicles, vacuoles or sacoules probably derived from the SER without the participation of Golgi apparatus and lysosomes, and the excess amount of material is stored as inclusions during the repairing of the organelles being overactive.

  • PDF

Ultrastructural Study of the Effect of Activated Carbon Treatment on the Mouse Kidney Treated with Lead (납 투여된 마우스의 신장에서 활성탄 처리 효과에 대한 전자현미경적 연구)

  • Chung, Min-Ju;Yoon, Jung-Sik;Chung, Kyung-A;Kim, Young-Ho;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.29 no.2
    • /
    • pp.149-162
    • /
    • 1999
  • For investigation of the activated carbon on the mouse kidney treated with Pb, the activated carbon (40 mg/kg) and Pb (30 mg/kg) were treated orally for three and six weeks, respectivelly, and observed by the electron microscope. On the glomerulus of the group with only Pb, the basal membrane thicked, projected, and the foot processes fused. On the proximal convoluted tubules, the number of microvilli were decreased and the number of vacuoles and lysosome increased on the cytoplasm. The mitochondria and endoplasmic reticulum were extended and ribosomes dropped from the ER. On the giomerulus of the group with Pb-activated carbon, the basal membrane and the foot processes were merely changed. On the proximal convoluted tubules, the shapes and number of microvilli were not changed and the number of vacuoles, microbodies, and lysosomes decreased. The shapes of mitochondria and endoplasmic reticulum observed almost similar with control group. Th at is, elongated mitochondria and attached ribosomes to endoplasmic reticulum. As result, the activated carbon has positive effect on reducing toxicity of lead in the mouse kidney in the view of electron microscope.

  • PDF

Melatonin protects endothelial progenitor cells against AGE-induced apoptosis via autophagy flux stimulation and promotes wound healing in diabetic mice

  • Jin, Haiming;Zhang, Zengjie;Wang, Chengui;Tang, Qian;Wang, Jianle;Bai, Xueqin;Wang, Qingqing;Nisar, Majid;Tian, Naifeng;Wang, Quan;Mao, Cong;Zhang, Xiaolei;Wang, Xiangyang
    • Experimental and Molecular Medicine
    • /
    • v.50 no.11
    • /
    • pp.13.1-13.15
    • /
    • 2018
  • Wound healing is delayed in diabetic patients. Increased apoptosis and endothelial progenitor cell (EPC) dysfunction are implicated in delayed diabetic wound healing. Melatonin, a major secretory product of the pineal gland, promotes diabetic wound healing; however, its mechanism of action remains unclear. Here, EPCs were isolated from the bone marrow of mice. Treatment of EPCs with melatonin alleviated advanced glycation end product (AGE)-induced apoptosis and cellular dysfunction. We further examined autophagy flux after melatonin treatment and found increased light chain 3 (LC3) and p62 protein levels in AGE-treated EPCs. However, lysosome-associated membrane protein 2 expression was decreased, indicating that autophagy flux was impaired in EPCs treated with AGEs. We then evaluated autophagy flux after melatonin treatment and found that melatonin increased the LC3 levels, but attenuated the accumulation of p62, suggesting a stimulatory effect of melatonin on autophagy flux. Blockage of autophagy flux by chloroquine partially abolished the protective effects of melatonin, indicating that autophagy flux is involved in the protective effects of melatonin. Furthermore, we found that the AMPK/mTOR signaling pathway is involved in autophagy flux stimulation by melatonin. An in vivo study also illustrated that melatonin treatment ameliorated impaired wound healing in a streptozotocin-induced diabetic wound healing model. Thus, our study shows that melatonin protects EPCs against apoptosis and dysfunction via autophagy flux stimulation and ameliorates impaired wound healing in vivo, providing insight into its mechanism of action in diabetic wound healing.

Can Hinokitiol Kill Cancer Cells? Alternative Therapeutic Anticancer Agent via Autophagy and Apoptosis (Hinokitiol에 의해 유도된 Autophagy 및 Apoptosis에 의한 대체 항암요법 연구)

  • Lee, Tae Bok;Jun, Jin Hyun
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.2
    • /
    • pp.221-234
    • /
    • 2019
  • Cancer is genetically, metabolically and infectiously induced life threatening disorder showing aggressive growing pattern with invasive tendency. In order to prevent this global menace from jeopardizing human life, enormous studies on carcinogenesis and treatment for chemotherapy resistance have been intensively researched. Hinokitiol (${\beta}$-thujaplicin) extracted from heart wood of cupressaceous is a well-known bioactive compound demonstrating anti-inflammation, anti-bacteria and anti-cancer effects on several cancer types via apoptosis and autophagy. This study proposed that hinokitiol activates transcription factor EB (TFEB) nuclear translocation for autophagy and lysosomal biogenesis regardless of nutrient condition in cancer cells. Mitophagy and ${\beta}$-catenin translocation into the nucleus under treatment of hinokitiol on non-small cell lung cancer (NSCLC) cells and HeLa cells were investigated. Hinokitiol exerted cytotoxicity on HeLa and HCC827 cells; moreover, artificially induced autophagy by overexpression of TFEB granted imperfect sustainability onto HeLa cells. Taken together, hinokitiol is the prominent autophagy inducer and activator of TFEB nuclear translocation. Alternative cancer therapy via autophagy is pros and cons since the autophagy in cancer cells is related to prevention and survival mechanism depending on nutrition. To avoid paradox of autophagy in cancer therapy, fine-tuned regulation and application of hinokitiol in due course for successful suppressing cancer cells are recommended.

The Role of Autophagy in Depression (우울증에서 자가소화작용의 역할)

  • Seo, Mi Kyoung;Park, Sung Woo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.32 no.10
    • /
    • pp.812-820
    • /
    • 2022
  • Depression is a psychiatric disorder characterized by depressed mood, anhedonia, fatigue, and altered cognitive function, leading to a decline in daily functioning. In addition, depression is a serious and common mental illness not only in an individual's life but also in society, so it must be actively treated. Autophagy is involved in the pathophysiological mechanism of mental illness. According to a recent study, it is known that autophagy-induced apoptosis affects neuroplasticity and causes depression and that antidepressants regulate autophagy. Autophagy is a catabolic process that degradation and removes unnecessary organelles or proteins through a lysosome. And, it is essential for maintaining cellular homeostasis. Autophagy is activated in stress conditions, and depression is a stress-related disease. Stress causes damage to cellular homeostasis. Recently, although the role of autophagy mechanisms in neurons has been investigated, the autophagy of depression has not been fully studied. This review highlights the new evidence for the involvement of autophagy in the pathophysiological mechanisms and treatment of depression. To highlight the evidence, we present results from clinical and preclinical studies showing that autophagy is associated with depression. Understanding the relevance of autophagy to depression and the limitations of research suggest that autophagy regulation may provide a new direction for antidepressant development.

COVID-19 in a 16-Year-Old Adolescent With Mucopolysaccharidosis Type II: Case Report and Review of Literature

  • Park, So Yun;Kim, Heung Sik;Chu, Mi Ae;Chung, Myeong-Hee;Kang, Seokjin
    • Pediatric Infection and Vaccine
    • /
    • v.29 no.2
    • /
    • pp.70-76
    • /
    • 2022
  • Coronavirus disease 2019 (COVID-19) in patients with underlying diseases, is associated with high infection and mortality rates, which may result in acute respiratory distress syndrome and death. Mucopolysaccharidosis (MPS) type II is a progressive metabolic disorder that stems from cellular accumulation of the glycosaminoglycans, heparan, and dermatan sulfate. Upper and lower airway obstruction and restrictive pulmonary diseases are common complaints of patients with MPS, and respiratory infections of bacterial or viral origin could result in fatal outcomes. We report a case of COVID-19 in a 16-year-old adolescent with MPS type II, who had been treated with idursulfase since 5 years of age. Prior to infection, the patient's clinical history included developmental delays, abdominal distension, snoring, and facial dysmorphism. His primary complaints at the time of admission included rhinorrhea, cough, and sputum without fever or increased oxygen demand. His heart rate, respiratory rate, and oxygen saturation were within the normal biological reference intervals, and chest radiography revealed no signs of pneumonia. Consequently, supportive therapy and quarantine were recommended. The patient experienced an uneventful course of COVID-19 despite underlying MPS type II, which may be the result of an unfavorable host cell environment and changes in expression patterns of proteins involved in interactions with viral proteins. Moreover, elevated serum heparan sulfate in patients with MPS may compete with cell surface heparan sulfate, which is essential for successful interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the host cell surface, thereby protecting against intracellular penetration by SARS-CoV-2.

Effects of Dietary Cholesterol on Male Reproductive Tracts by Regulating PCSK9 Gene (콜레스테롤 식이가 Pcsk9 유전자 조절을 통해 남성 생식기관에 미치는 영향)

  • Lim, Whasun;Bae, Hyocheol;Song, Gwonhwa
    • Journal of Food Hygiene and Safety
    • /
    • v.31 no.2
    • /
    • pp.113-118
    • /
    • 2016
  • Proprotein convertase subtilisin/kexin type 9 (PCSK9), is a protein mainly secreted by a liver. The PCSK9 plays an important role in low density lipoprotein (LDL) metabolism acting as a repressor of LDL receptor through transportation of the LDLR to the lysosome for degradation. Thus, the PCSK9 inhibitor suppresses PCSK9-regulated degradation of the LDL receptor as a LDL-lowering medicine. However, little is known about the role of PCSK9 in the reproductive system. Therefore, in the present study, we investigated Pcsk9 expression in male reproductive tracts including penises, prostates and testes using rats in response to their diets between a normal diet and a high-fat diet with cholesterol. Based on our previous study, the high-fat diet elevates concentration of total cholesterol and LDL in serum whereas it reduces the concentration of plasma high density lipoprotein (HDL). In addition, it dramatically affects to morphological changes of the male reproductive organs. Consistent with these results, the expression of Pcsk9 was substantially decreased in the penile tissues (P < 0.001) from rats fed a high fat diet as compared to a normal diet. Moreover, it slightly reduced in the prostate and testes (P < 0.05) of rats in response to a high fat diet. Localization of Pcsk9 was predominantly detected in urethral epithelium of penises, cylinder-shaped cells of prostate glands, and spermatogonia, spermatocytes and spermatid of testes of rats. Collectively, results of current study provide invaluable insights into the Pcsk9 gene with respect to its tissue- and cell-specific expression by a high fat diet with cholesterol.

Effect of Chitosan Oligosaccharide on the Mouse Liver with Toxicated by Carbon Tetrachloride (사염화탄소로 중독된 생쥐의 간독성에 대한 키토산올리고당의 효과)

  • Hwang, Koo-Yeon;Yoon, Jung-Sik;Kim, Young-Ho;Chung, Min-Ju;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.29 no.3
    • /
    • pp.363-376
    • /
    • 1999
  • This study aims to demonstrate the effect of chitosan oligosaccharide on the ultrastructural changes in the mouse liver toxicated by carbon tetrachloride $(CCl_4)$. A healthy male ICR mouse that weighted $27{\pm}2gm$ was used for experiment. The experimental group was divided into three groups; the group A; the pretreated group with chitosan oligosaccharide, the group B; the simultaneous group, the group C; treated only the $CCl_4$. The group A was simultaneously treated with chitosan oligosaccharide and $CCl_4$ after pretreated with chitosan oligosaccharide for 7 days. The group B injected $CCl_4$ and chitosan oligosaccharide to the intraperitoneal. The group C injected with only $CCl_4$ to the intraperitoneal. The results were as follow: In the group A, the nuclear membrane and the mitochondria were observed almost normal in shapes at overall the time. Some lamellae of the RER (rough endoplasmic reticulum) destructed until 48 hours but ribosome attached. The destructed lamellae reformed at 72 hours but the smooth membrane vesicles not observed. The lysosomes observed at 72 hours. At 96 hours, all organelles showed in normal shapes. In the group B, changes of nuclear membranes were relatively lighter than group C. Mitochondria observed normal shape through the time. Parts of RER reformed the lamellae, other parts dilated inner cavity. And lipid droplet observed around the 24 hours. Glycogen and lysosome observed 48 hours and 72 hours, respectively. In the group C, nuclear membrane was irregular and nuclear cytoplasm condensed through the time. The lamellae of RER destructed from 24 to 96 hours. Smooth membrane vesicles observed in the cytoplasm at 48 ours. Mitochondria was less effected by toxic. And from the 24 hours, the variable sizes of lipid droplets observed in tile cytoplasm. These results suggest that chitosan oligosaccharide attenuates the toxic effect of the carbon tetrachloride in the mouse liver.

  • PDF

Electron Microscopic Studies on Olfactory Bulbs in the Vertebrates by Phylogenetics (계통발생에 따른 척추동물의 뇌후구에 대한 전자현미경적 연구)

  • Choi, W.B.;Chung, Y.H.;Seo, J.E.
    • Applied Microscopy
    • /
    • v.15 no.2
    • /
    • pp.31-68
    • /
    • 1985
  • Authors are trying to unveil the ultrastructural organization of olfactory bulb, which has been summerized under light microscopic level or communicated only in some detail in different view point until now. For the critical point of view, since the phylogenetical approach will give the ultimate value in the correlative study between structural and functional bases (Brodal, 1969), the present study was carried out light and electron microscopic analyses of the structures of the neurons and synaptic organizations in olfactory bulbs from different animals in phylogenetical scale. We selected each one species from five animal classes: the house rabbit(Oryctolagus cuniculus var. domesticus [Gmelin]) from Mammalia, the domestic fowl (Gallus gallus domesticus Brisson) from Aves, the viper (Agkistrodon hylys [G.P. Pallas]) from Reptilia, a frog (Bombiana orientalis Boulenger) from Amphibia and the crussian carp (Carassius carassius [Linne]) from Pisces. For light microscopic study, samples were fixed in 10% formalin and paraffin sections were stained with hematoxylin-eosin. For the electron microscopic study, the tissues were fixed by perfusion through the heart or immersion with 1% paraform-aldehyde-glutaraldehyde mixture (phosphate buffer, pH 7.4), and final tissue block trimmed under dissecting microscope were osmicated (1% OsO4), they were embedded in Araldite or Epon 812, and ultrathin sections were made by LKB-V ultratome following the inspection of semi-thin sections stained with toluidine blue-borax solution. Ultra-thin sections contrasted with uranyl acetate and lead citrate were observed with JEM 100CX electron microscope. We have summerized our morphological analyses as follows: 1. The olfactory bulb of rabbit, viper and frog shows the eight layers of fila olfactoria, glomerular, external granular, external plexiform, mitral cell, internal plexiform, internal granular, medullary but domestic fowl shows the five layers of glomerular, fibrillar, mitral, granular and medullary and the three layers of fibrilla, glomerular and medullary in crussian carp. The sharpness of demarcation between the layers shows deferential tendency according to phylogenetical order. 2. Mitral cells of vertebrate have large triangular or oval shape with spherical nuclei which contain not so much chromatin. The cytoplasm contains numerous cell organelles, of which Nissl's bodies or granular endoplasmic reticula arranged as parallel strands. Development of granular endoplasmic reticula were declined as the phylogentical grade is going lower. 3. Tufted cells of all animal are mostly spindle or polygonal contour and contain oval nuclei which located in periphery of cytoplasm. The nuclei of rabbit, fowl, viper and frog has relatively space chromatin, but a nucleus of crussian carp contain irregularly aggregated chromatin in karyoplasm. Their cytoplasmic volume and cell organelle contents are in between those of mitral cell and granular cell. They contain moderate amount of mitochondria, granular endoplasmic reticula, a few Golgi complex, polysomes, lysosome, etc. 4. Granule of cells of all the vertebrate amimals studied exhibit similar features; cells and their dense nuclei show spherical or oval contour, and they have the thin rim of cytoplasm which contain only a few cell organelles. 5. In rabbit, the soma of mitral cells were in contact with boutons with two types of synaptic vesicles, that is, round and flat vesicles, especially flat vesicles in boutons were showing reciprocal synapses. However, in domestic fowls, vipers, frogs and crussian carps, there were found boutons showing only spherical synaptic vesicles. 6. The boutons containing round synaptic vesicles were made contact with the some of tufted cell of olfactory bulb in the rabbits, fowls, vipers and frogs, but no synaptic boutons were observed in soma of tufted cells in crussian carps. In the frogs, there were observed dendrites were contact with the soma of tufted cells. 7. In the neuropils of plexiform, granular and glomerular layers olfactory bulbs in the vertebrate, the synapses were axo-large dendrites, axo-median and small dendrites, dendrodendritic, and axo-axonal contacts. However, in the neuropil of crussian carps, synapses were observed only in glomerular layer.

  • PDF