Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.10.812

The Role of Autophagy in Depression  

Seo, Mi Kyoung (Paik Institute for Clinical Research, Inje University)
Park, Sung Woo (Paik Institute for Clinical Research, Inje University)
Seog, Dae-Hyun (Department of Convergence Biomedical Science, College of Medicine, Inje University)
Publication Information
Journal of Life Science / v.32, no.10, 2022 , pp. 812-820 More about this Journal
Abstract
Depression is a psychiatric disorder characterized by depressed mood, anhedonia, fatigue, and altered cognitive function, leading to a decline in daily functioning. In addition, depression is a serious and common mental illness not only in an individual's life but also in society, so it must be actively treated. Autophagy is involved in the pathophysiological mechanism of mental illness. According to a recent study, it is known that autophagy-induced apoptosis affects neuroplasticity and causes depression and that antidepressants regulate autophagy. Autophagy is a catabolic process that degradation and removes unnecessary organelles or proteins through a lysosome. And, it is essential for maintaining cellular homeostasis. Autophagy is activated in stress conditions, and depression is a stress-related disease. Stress causes damage to cellular homeostasis. Recently, although the role of autophagy mechanisms in neurons has been investigated, the autophagy of depression has not been fully studied. This review highlights the new evidence for the involvement of autophagy in the pathophysiological mechanisms and treatment of depression. To highlight the evidence, we present results from clinical and preclinical studies showing that autophagy is associated with depression. Understanding the relevance of autophagy to depression and the limitations of research suggest that autophagy regulation may provide a new direction for antidepressant development.
Keywords
Antidepressants; autophagy; depression; neuroplasticity; stress;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H. and Mizushima, N. 2006. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441, 885-889.   DOI
2 Hoeffer, C. A. and Klann, E. 2010. mTOR Signaling: At the crossroads of plasticity, memory, and disease. Trends Neurosci. 33, 67.
3 Geng, J., Liu, J., Yuan, X., Liu, W. and Guo, W. 2019. Andrographolide triggers autophagy-mediated inflammation inhibition and attenuates chronic unpredictable mild stress (CUMS)-induced depressive-like behavior in mice. Toxicol. Appl. Pharmacol. 379, 114688.
4 Shu, X., Sun, Y., Sun, X., Zhou, Y., Bian, Y., Shu, Z., Ding, J., Lu, M. and Hu, G. 2019. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis. 10, 577.
5 Huang, X., Wu, H., Jiang, R., Sun, G., Shen, J., Ma, M., Ma, C., Zhang, S., Huang, Z., Wu, Q., Chen, G. and Tao, W. 2018. The antidepressant effects of a-tocopherol are related to activation of autophagy via the AMPK/mTOR pathway. Eur. J. Pharmacol. 833, 1-7.   DOI
6 Jeong, J. K., Moon, M. H., Lee, Y. J., Seol, J. W. and Park, S. Y. 2013. Autophagy induced by the class III histone deacetylase Sirt1 prevents prion peptide neurotoxicity. Neurobiol. Aging 34, 146-156.   DOI
7 Jernigan, C. S., Goswami, D. B., Austin, M. C., Iyo, A. H., Chandran, A., Stockmeier, C. A. and Karolewicz, B. 2011. The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 35, 1774-1779.   DOI
8 Jiang, P., Guo, Y., Dang, R., Yang, M., Liao, D., Li, H., Sun, Z., Feng, Q. and Xu, P. 2017. Salvianolic acid B protects against lipopolysaccharide-induced behavioral deficits and neuroinflammatory response: involvement of autophagy and NLRP3 inflammasome. J. Neuroinflammation 14, 239.
9 Jiang, Y., Botchway, B. O. A., Hu, Z. and Fang, M. 2019. Overexpression of SIRT1 inhibits corticosterone-induced autophagy. Neuroscience 411, 11-22.   DOI
10 Kim, H. J., Cho, M. H., Shim, W. H., Kim, J. K., Jeon, E. Y., Kim, D. H. and Yoon, S. Y. 2017. Deficient autophagy in microglia impairs synaptic pruning and causes social behavioral defects. Mol. Psychiatry 22, 1576-1584.   DOI
11 Smith, E. D., Prieto, G. A., Tong, L., Sears-Kraxberger, I., Rice, J. D., Steward, O. and Cotman, C. W. 2014. Rapamycin and interleukin-1ss impair brain-derived neurotrophic factor-dependent neuron survival by modulating autophagy. J. Biol. Chem. 289, 20615-20629.   DOI
12 Thornicroft, G., Chatterji, S., Evans-Lacko, S., Gruber, M., Sampson, N., Aguilar-Gaxiola, S., Al-Hamzawi, A., Alonso, J., Andrade, L., Borges, G., Bruffaerts, R., Bunting, B., de Almeida, J. M., Florescu, S., de Girolamo, G., Gureje, O., Haro, J. M., He, Y., Hinkov, H., Karam, E., Kawakami, N., Lee, S., Navarro-Mateu, F., Piazza, M., Posada-Villa, J., de Galvis, Y. T. and Kessler, R. C. 2017. Undertreatment of people with major depressive disorder in 21 countries. Br. J. Psychiatry 210, 119-124.   DOI
13 Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E. and Tanaka, K. 2006. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441, 880-884.   DOI
14 Tsukada, M. and Ohsumi, Y. 1993. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 333, 169-174.   DOI
15 Li, M., Li, C., Yu, H., Cai, X., Shen, X., Sun, X., Wang, J., Zhang, Y. and Wang, C. 2017. Lentivirus-mediated interleukin-1β (IL-1β) knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxietyand depression-like behaviors in mice. J. Neuroinflammation 14, 190.
16 Wang, P., Feng, Y. B., Wang, L., Li, Y., Fan, C., Song, Q. and Yu, S. Y. 2019. Interleukin-6: Its role and mechanisms in rescuing depression-like behaviors in rat models of depression. Brain Behav. Immun. 82, 106-121.   DOI
17 Wang, Q., Timberlake, M. A. 2nd., Prall, K. and Dwivedi, Y. 2017. The recent progress in animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 77, 99-109.   DOI
18 Lee, K. M., Hwang, S. K. and Lee, J. A. 2013. Neuronal autophagy and neurodevelopmental disorders. Exp. Neurobiol. 22, 133-142.   DOI
19 Ma, J., Hou, L. N., Rong, Z. X., Liang, P., Fang, C., Li, H. F., Qi, H. and Chen, H. Z. 2013. Antidepressant desipramine leads to C6 glioma cell autophagy: implication for the adjuvant therapy of cancer. Anticancer Agents Med. Chem. 13, 254-260.   DOI
20 Marino, G., Niso-Santano, M., Baehrecke, E. H. and Kroemer, G. 2014. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81-94.   DOI
21 Mizushima, N., Yoshimori, T. and Ohsumi, Y. 2011. The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132.   DOI
22 O'Connor, J. C., Lawson, M. A., Andre, C., Moreau, M., Lestage, J., Castanon, N., Kelley, K. W. and Dantzer, R. 2009. Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol. Psychiatry 14, 511-522.   DOI
23 Willner, P. 1997. Validity, reliability and utility of the chronic mild stress model of depression: A 10-year review and evaluation. Psychopharmacology (Berl). 134, 319-329.   DOI
24 Pierone, B. C., Pereira, C. A., Garcez, M. L. and Kaster, M. P. 2020. Stress and signaling pathways regulating autophagy: From behavioral models to psychiatric disorders. Exp. Neurol. 334, 113485.
25 Plaza-Zabala, A., Sierra-Torre, V. and Sierra, A. 2017. Autophagy and microglia: Novel partners in neurodegeneration and aging. Int. J. Mol. Sci. 18, 598.
26 Wang, Z., Liu, S., Pan, W., Guo, Y. and Shen, Z. 2018. Shen Bafilomycin A1 alleviates depression-like symptoms in chronic unpredictable mild stress rats. Mol. Med. Rep. 18, 4587-4594.
27 Woo, H., Hong, C. J., Jung, S., Choe, S. and Yu, S. W. 2018. Chronic restraint stress induces hippocampal memory deficits by impairing insulin signaling. Mol. Brain 11, 37.
28 Xiao, X., Shang, X., Zhai, B., Zhang, H. and Zhang, T. 2018. Nicotine alleviates chronic stress-induced anxiety and depressive-like behavior and hippocampal neuropathology via regulating autophagy signaling. Neurochem. Int. 114, 58-70.   DOI
29 Zeng, M. and Zhou, J. N. 2008. Roles of autophagy and mTOR signaling in neuronal differentiation of mouse neuroblastoma cells. Cell Signal. 20, 659-665.   DOI
30 Zhang, H., Shang, Y., Xiao, X., Yu, M. and Zhang, T. 2017. Prenatal stress-induced impairments of cognitive flexibility and bidirectional synaptic plasticity are possibly associated with autophagy in adolescent male-offspring. Exp. Neurol. 298, 68-78.   DOI
31 Bateup, H. S., Takasaki, K. T., Saulnier, J. L., Denefrio, C. L. and Sabatini, B. L. 2011. Loss of Tsc1 in vivo impairs hippocampal mGluR-LTD and increases excitatory synaptic function. J. Neurosci. 31, 8862-8869.   DOI
32 Zhao, Z., Zhang, L., Guo, X. D., Cao, L. L., Xue, T. F., Zhao, X. J., Yang, D. D., Yang, J., Ji, J., Huang, J. Y. and Sun, X. L. 2017. Rosiglitazone exerts an anti-depressive effect in unpredictable chronic mild-stress-induced depressive mice by maintaining essential neuron autophagy and inhibiting excessive astrocytic apoptosis. Front. Mol. Neurosci. 10, 1-16.   DOI
33 Zschocke, J., Zimmermann, N., Berning, B., Ganal, V., Holsboer, F. and Rein, T. 2011. Antidepressant drugs diversely affect autophagy pathways in astrocytes and neurons-dissociation from cholesterol homeostasis. Neuropsychopharmacology 36, 1754-1768.   DOI
34 Ali, T., Rahman, S. U., Hao, Q., Li, W., Liu, Z., Ali Shah, F., Murtaza, I., Zhang, Z., Yang, X., Liu, G. and Li, S. 2020. Melatonin prevents neuroinflammation and relieves depression by attenuating autophagy impairment through FOXO3a regulation. J. Pineal Res. 69, e12667.
35 Cai, Q. and Ganesan, D. 2022. Regulation of neuronal autophagy and the implications in neurodegenerative diseases. Neurobiol. Dis. 162, 105582.
36 Chen, A., Xiong, L., Tong, Y. and Mao, M. 2013. Neuroprotective effect of brain-derived neurotrophic factor mediated by autophagy through the PI3K/Akt/mTOR pathway. Mol. Med. Rep. 8, 1011-1016.   DOI
37 He, S., Zeng, D., Xu, F., Zhang, J., Zhao, N., Wang, Q., Shi, J., Lin, Z., Yu, W. and Li, H. 2019. Baseline serum levels of Beclin-1, but not inflammatory factors, may predict antidepressant treatment response in Chinese Han patients with MDD: A preliminary study. Front. Psychiatry 10, 378.
38 Stavoe, A. K. H. and Holzbaur, E. L. F. 2019. Axonal autophagy: Mini-review for autophagy in the CNS. Neurosci. Lett. 697, 17-23.   DOI
39 Rosa, P. B., Ribeiro, C. M., Bettio, L. E., Colla, A., Lieberknecht, V., Moretti, M. and Rodrigues, A. L. 2014. Folic acid prevents depressive-like behavior induced by chronic corticosterone treatment in mice. Pharmacol. Biochem. Behav. 127, 1-6.   DOI
40 Shen, W. and Ganetzky, B. 2009. Autophagy promotes synapse development in Drosophila. J. Cell Biol. 187, 71-79.   DOI
41 Wang, J. L., Wang, J. J., Cai, Z. N. and Xu, C. J. 2018. The effect of curcumin on the differentiation, apoptosis and cell cycle of neural stem cells is mediated through inhibiting autophagy by the modulation of Atg7 and p62. Int. J. Mol. Med. 42, 2481-2488.
42 Chen, S., Guo, W., Qi, X., Zhou, J., Liu, Z. and Cheng, Y. 2019. Natural alkaloids from lotus plumule ameliorate lipopolysaccharide-induced depression-like behavior: integrating network pharmacology and molecular mechanism evaluation. Food Funct. 10, 6062-6073.   DOI
43 Gassen, N. C., Hartmann, J., Schmidt, M. V. and Rein, T. 2015. FKBP5/ FKBP51 enhances autophagy to synergize with antidepressant action. Autophagy 11, 578-580.   DOI
44 Ghosh, S., Choudhury, S., Chowdhury, O., Mukherjee, S., Das, A., Sain, A., Gupta, P., Adhikary, A. and Chattopadhyay, S. 2020. Inflammation-induced behavioral changes is driven by alterations in Nrf2dependent apoptosis and autophagy in mouse hippocampus: Role of fluoxetine. Cell Signal. 68, 109521.
45 Wang, S., Li, B., Qiao, H., Lv, X., Liang, Q., Shi, Z., Xia, W., Ji, F. and Jiao, J. 2014. Autophagy-related gene Atg5 is essential for astrocyte differentiation in the developing mouse cortex. EMBO. Rep. 15, 1053-1061.   DOI
46 Jeon, S. H., Kim, S. H., Kim, Y., Kim, Y. S., Lim, Y., Lee, Y. H. and Shin, S. Y. 2011. The tricyclic antidepressant imipramine induces autophagic cell death in U-87MG glioma cells. Biochem. Biophys. Res. Commun. 413, 311-317.   DOI
47 Willner, P. 2005. Chronic mild stress (CMS) revisited: Consistency and behavioural-neurobiological concordance in the effects of CMS. Neuropsychobiology 52, 90-110.   DOI
48 Yang, Y., Hu, Z., Du, X., Davies, H., Huo, X. and Fang, M. 2017. miR-16 and fluoxetine both reverse autophagic and apoptotic change in chronic unpredictable mild stress model rats. Front. Neurosci. 11, 428.
49 Zhang, X., Bu, H., Jiang, Y., Sun, G., Jiang, R., Huang, X., Duan, H., Huang, Z. and Wu, Q. 2019. The antidepressant effects of apigenin are associated with the promotion of autophagy via the mTOR/AMPK/ULK1 pathway. Mol. Med. Rep. 20, 2867-2874.
50 Jia, J. and Le, W. 2015. Molecular network of neuronal autophagy in the pathophysiology and treatment of depression. Neurosci. Bull. 31, 427-434.   DOI
51 Kuma, A., Komatsu, M. and Mizushima, N. 2017. Autophagy-monitoring and autophagy-deficient mice. Autophagy 13, 1619-1628.   DOI
52 Alcocer-Gomez, E., Casas-Barquero, N., Nunez-Vasco, J., Navarro-Pando, J. M. and Bullon, P. 2017. Psychological status in depressive patients correlates with metabolic gene expression. CNS. Neurosci. Ther. 23, 843-845.   DOI
53 Alcocer-Gomez, E., Casas-Barquero, N., Williams, M. R., Romero-Guillena, S. L., Canadas-Lozano, D., Bullon, P., Sanchez-Alcazar, J. A., Navarro-Pando, J. M. and Cordero, M. D. 2017. Antidepressants induce autophagy dependent-NLRP3-inflammasome inhibition in major depressive disorder. Pharmacol. Res. 121, 114-121.   DOI
54 Johnson, S. A., Fournier, N. M. and Kalynchuk, L. E. 2006. Effect of different doses of corticosterone on depressionlike behavior and HPA axis responses to a novel stressor. Behav. Brain Res. 168, 280-288.   DOI
55 Liu, C., Hao, S., Zhu, M., Wang, Y., Zhang, T. and Yang, Z. 2018. Maternal separation induces different autophagic responses in the hippocampus and prefrontal cortex of adult rats. Neuroscience 374, 287-294.   DOI
56 Shelton, R. C., Claiborne, J., Sidoryk-Wegrzynowicz, M., Reddy, R., Aschner, M., Lewis, D. A. and Mirnics, K. 2011. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol. Psychiatry 16, 751-762.   DOI
57 Frazer, A. and Benmansour, S. 2002. Delayed pharmacological effects of antidepressants. Mol. Psychiatry 7, S23-S28.   DOI
58 Gassen, N. C. and Rein, T. 2019. Is there a role of autophagy in depression and antidepressant action? Front. Psychiatry 10, 337.
59 Russell, R. C., Yuan, H. X. and Guan, K. L. 2013. Autophagy regulation by nutrient signaling. Cell Res. 24, 42-57.   DOI
60 Gulbins, A., Schumacher, F., Becker, K. A., Wilker, B., Soddemann, M., Boldrin, F., Muller, C. P., Edwards, M. J., Goodman, M., Caldwell, C. C., Kleuser, B., Kornhuber, J., Szabo, I. and Gulbins, E. 2018. Antidepressants act by inducing autophagy controlled by sphingomyelin-ceramide. Mol. Psychiatry 23, 2324-2346.   DOI
61 Pattingre, S., Espert, L., Biard-Piechaczyk, M. and Codogno, P. 2008. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90, 313-323.   DOI
62 Menzies, F. M., Fleming, A., Caricasole, A., Bento, C. F., Andrews, S. P., Ashkenazi, A., Fullgrabe, J., Jackson, A., Jimenez Sanchez, M., Karabiyik, C., Licitra, F., Lopez Ramirez, A., Pavel, M., Puri, C., Renna, M., Ricketts, T., Schlotawa, L., Vicinanza, M., Won, H., Zhu, Y., Skidmore, J. and Rubinsztein, D. C. 2017. Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron 93, 1015-1034.   DOI