DOI QR코드

DOI QR Code

COVID-19 in a 16-Year-Old Adolescent With Mucopolysaccharidosis Type II: Case Report and Review of Literature

  • Park, So Yun (Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine) ;
  • Kim, Heung Sik (Department of Pediatrics, Keimyung University Daegu Dongsan Hospital) ;
  • Chu, Mi Ae (Department of Pediatrics, Keimyung University Daegu Dongsan Hospital) ;
  • Chung, Myeong-Hee (Myung-hee Chung Pediatric Clinic) ;
  • Kang, Seokjin (Department of Pediatrics, Keimyung University Dongsan Hospital, Keimyung University School of Medicine)
  • Received : 2022.01.07
  • Accepted : 2022.05.30
  • Published : 2022.08.25

Abstract

Coronavirus disease 2019 (COVID-19) in patients with underlying diseases, is associated with high infection and mortality rates, which may result in acute respiratory distress syndrome and death. Mucopolysaccharidosis (MPS) type II is a progressive metabolic disorder that stems from cellular accumulation of the glycosaminoglycans, heparan, and dermatan sulfate. Upper and lower airway obstruction and restrictive pulmonary diseases are common complaints of patients with MPS, and respiratory infections of bacterial or viral origin could result in fatal outcomes. We report a case of COVID-19 in a 16-year-old adolescent with MPS type II, who had been treated with idursulfase since 5 years of age. Prior to infection, the patient's clinical history included developmental delays, abdominal distension, snoring, and facial dysmorphism. His primary complaints at the time of admission included rhinorrhea, cough, and sputum without fever or increased oxygen demand. His heart rate, respiratory rate, and oxygen saturation were within the normal biological reference intervals, and chest radiography revealed no signs of pneumonia. Consequently, supportive therapy and quarantine were recommended. The patient experienced an uneventful course of COVID-19 despite underlying MPS type II, which may be the result of an unfavorable host cell environment and changes in expression patterns of proteins involved in interactions with viral proteins. Moreover, elevated serum heparan sulfate in patients with MPS may compete with cell surface heparan sulfate, which is essential for successful interaction between the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein and the host cell surface, thereby protecting against intracellular penetration by SARS-CoV-2.

코로나바이러스감염증-19 (COVID-19)의 임상 양상은 무증상부터 급성 호흡곤란 증후군에 이르기까지 다양하다. 점액 다당류증(mucopolysaccharidosis) 2형은글라이코스아미노글라이칸(glycosaminoglycan)의 일종인 헤파란 황산염(heparan sulfate)과 더마탄 황산염(dermatan sulfate)의 분해를 촉매하는 효소 결핍에 의해 상기 물질이 리소좀(lysosome)에 축적되는 질환으로 전신 침범, 특히 호흡기침범을 특징으로 한다. 따라서 박테리아나 바이러스에 의한 호흡기 감염은 예후에 치명적일 수 있다. 현재 점액 다당류증 환자에서 제 2형 중증급성호흡기증후군 코로나 바이러스(SARS-CoV-2) 감염 후의 임상 양상에 대한 보고는 매우 드물고, 이에 점액 다당류증 2형으로 효소대체요법을 받고 있던 환자에서 상기 바이러스 감염 후의 임상 양상에 대해 보고하고 관련 문헌에 대해 고찰하고자 한다. 16세 남아로 가족간 전파로 코로나바이러스감염증이 발생하였다. 콧물, 기침, 가래 등 호흡기 증상이 관찰되었다. 발열이나 산소요구도 증가는 없었으며 심박수, 호흡수, 산소 포화도는 정상 범위였고 혈액검사결과에서 백혈구 감소증이 관찰되었다. 흉부 방사선 사진에서 폐렴 소견은 보이지 않았다. 보존적 치료와 격리만으로 증상이 호전되었다. 경미한 임상 양상의 원인으로 전구 물질의 축적으로 인해 바이러스에게 불리한 숙주의 세포 환경, 바이러스와의 상호작용에 관여하는 단백질을 암호화하는 유전자 발현의 특정방향으로의 변화가 제시되고 있다. 또한 점액 다당류증 환자에서 증가된 혈청 헤파란 황산염이 SARS-CoV-2 스파이크 단백질과 숙주 세포의 상호작용에 필수적인 세포 표면의 헤파란 황산염과 경쟁하여 SARS-CoV-2의 세포 내 침투로부터 보호한다는 가설도 있다. 향후 더 많은 사례를 통해 점액 다당류증 등의 리소좀 축적질환에서 코로나바이러스감염증의 발현 양상에 대한 연구가 필요하다.

Keywords

References

  1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
  2. Lee JY, Hong SW, Hyun M, Park JS, Lee JH, Suh YS, et al. Epidemiological and clinical characteristics of coronavirus disease 2019 in Daegu, South Korea. Int J Infect Dis 2020;98:462-6. https://doi.org/10.1016/j.ijid.2020.07.017
  3. Muenzer J. Overview of the mucopolysaccharidoses. Rheumatology (Oxford) 2011;50 Suppl 5:v4-12. https://doi.org/10.1093/rheumatology/ker394
  4. Scarpa M, Almassy Z, Beck M, Bodamer O, Bruce IA, De Meirleir L, et al. Mucopolysaccharidosis type II: European recommendations for the diagnosis and multidisciplinary management of a rare disease. Orphanet J Rare Dis 2011;6:72. https://doi.org/10.1186/1750-1172-6-72
  5. Furlan F, Rovelli A, Rigoldi M, Filocamo M, Tappino B, Friday D, et al. A new case report of severe mucopolysaccharidosis type VII: diagnosis, treatment with haematopoietic cell transplantation and prenatal diagnosis in a second pregnancy. Ital J Pediatr 2018;44:128. https://doi.org/10.1186/s13052-018-0566-x
  6. Li LQ, Huang T, Wang YQ, Wang ZP, Liang Y, Huang TB, et al. COVID-19 patients' clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol 2020;92:577-83. https://doi.org/10.1002/jmv.25757
  7. Berger KI, Fagondes SC, Giugliani R, Hardy KA, Lee KS, McArdle C, et al. Respiratory and sleep disorders in mucopolysaccharidosis. J Inherit Metab Dis 2013;36:201-10. https://doi.org/10.1007/s10545-012-9555-1
  8. Zimran A, Szer J, Revel-Vilk S. Impact of Gaucher disease on COVID-19. Intern Med J 2020;50:894-5. https://doi.org/10.1111/imj.14894
  9. Ilan Y. β-Glycosphingolipids as mediators of both inflammation and immune tolerance: a manifestation of randomness in biological systems. Front Immunol 2019;10:1143. https://doi.org/10.3389/fimmu.2019.01143
  10. Fdil N, Hammoud M, Sabir E, Lafha K, Laamani A, Alibou S, et al. The lysosomal storage diseases: a promising axis for COVID-19 future therapies. Am J Biomed Sci Res 2020;10:570-1. https://doi.org/10.34297/AJBSR.2020.10.001576
  11. Ballout RA, Sviridov D, Bukrinsky MI, Remaley AT. The lysosome: a potential juncture between SARS-CoV-2 infectivity and Niemann-Pick disease type C, with therapeutic implications. FASEB J 2020;34:7253-64. https://doi.org/10.1096/fj.202000654R
  12. Pierzynowska K, Gaffke L, Wegrzyn G. Transcriptomic analyses suggest that mucopolysaccharidosis patients may be less susceptible to COVID-19. FEBS Lett 2020;594:3363-70. https://doi.org/10.1002/1873-3468.13908
  13. Purrello M, Di Pietro C, Rapisarda A, Mirabile E, Motta S, Sichel G, et al. Genetic characterization of general transcription factors TFIIF and TFIIB of Homo sapiens sapiens. Cytogenet Cell Genet 1995;69:75-80. https://doi.org/10.1159/000133942
  14. Dejgaard SY, Presley JF. Rab18: new insights into the function of an essential protein. Cell Mol Life Sci 2019;76:1935-45. https://doi.org/10.1007/s00018-019-03050-3
  15. Oyer HM, Sanders CM, Kim FJ. Small-molecule modulators of Sigma1 and Sigma2/TMEM97 in the context of cancer: foundational concepts and emerging themes. Front Pharmacol 2019;10:1141. https://doi.org/10.3389/fphar.2019.01141
  16. Shapshak P. Molecule of the month, PDE4DIP. Bioinformation 2012;8:740-1. https://doi.org/10.6026/97320630008740
  17. Clausen TM, Sandoval DR, Spliid CB, Pihl J, Perrett HR, Painter CD, et al. SARS-CoV-2 infection depends on cellular heparan sulfate and ACE2. Cell 2020;183:1043-1057.e15. https://doi.org/10.1016/j.cell.2020.09.033
  18. Lindahl U, Couchman J, Kimata K, Esko JD. Proteoglycans and sulfated glycosaminoglycans. In: Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of glycobiology. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press, 2015:207-21.
  19. Tomatsu S, Gutierrez MA, Ishimaru T, Pena OM, Montano AM, Maeda H, et al. Heparan sulfate levels in mucopolysaccharidoses and mucolipidoses. J Inherit Metab Dis 2005;28:743-57. https://doi.org/10.1007/s10545-005-0069-y