• Title/Summary/Keyword: Lyso-PAF

Search Result 12, Processing Time 0.025 seconds

Endotoxin-induced Acute Lung Injury is Mediated by PAF Produced via Remodelling of Lyso PAF in the Lungs

  • Lee, Young-Man;Kim, Teo-An
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.3
    • /
    • pp.219-226
    • /
    • 2000
  • In order to elucidate the role of platelet activating factor (PAF) in the acute lung injury induced by endotoxin (ETX), activities of phospholipase A2, lyso PAF acetyltransferase and oxidative stress by neutrophilic respiratory burst were probed in the present study. To induce acute lung injury, $100\;{\mu}g$ of E.coli ETX (type 0127; B8) was instilled directly into the tracheae of Sprague-Dawley rats. Five hours after the ETX instillation, induction of acute lung injury was confirmed by lung leak index and protein contents in the bronchoalveolar lavage (BAL) fluid. At the same time, lung phospholipase A2 (PLA2) activity and expression of group I and II secretory type PLA2 were examined. In these acutely injured rats, ketotifen fumarate, known as lyso PAF acetyltransferase inhibitor and mepacrine were administered to examine the role of PAF in the pathogenesis of the acute lung injury. To know the effect of the ETX in the synthesis of the PAF in the lungs, lyso PAF acetyltransferase activity and PAF content in the lungs were measured after treatments of ETX, ketotifen fumarate and mepacrine. In addition, the role of neutrophils causing the oxidative stress after ETX was examined by measuring lung myeloperoxidase (MPO) and enumerating neutrophils in the BAL fluid. To confirm the oxidative stress in the lungs, pulmonary contents of malondialdehyde (MDA) were measured. After instillation of the ETX in the lungs, lung leak index increased dramatically (p<0.001), whereas mepacrine and ketotifen decreased the lung leak index significantly (p<0.001). Lung PLA2 activity also increased (p<0.001) after ETX treatment compared with control, which was reversed by mepacrine and ketotifen (p<0.001). In the examination of expression of group I and II secretory PLA2, mRNA synthesis of the group II PLA2 was enhanced by ETX treatment, whereas ketotifen and WEB 2086, the PAF receptor antagonist, decreased the expression. The activity of the lysoPAF acetyltransferase increased (p<0.001) after treatment of ETX, which implies the increased synthesis of PAF by the remodelling of lysoPAF in the lungs. Consequently, the contents of the PAF in the lungs were increased by ETX compared with control (p<0.001), while mepacrine (p<0.001) and ketotifen (p<0.01) decreased the synthesis of the PAF in the lungs of ETX treated rats. The infiltration of the neutrophils was confirmed by measuring and enumerating lung MPO and the neutrophils in the BAL fluid respectively. Compared with control, ETX increased lung MPO and number of neutrophils in BAL significantly (p<0.001) whereas mepacrine and ketotifen decrerased number of neutrophils (p<0.001) and MPO (p<0.05, p<0.001, respectively). The lung MDA contents were also increased (p<0.001) by ETX treatment, but treatment with mepacrine (p<0.001) and ketotifen (p<0.01) decreased the lung MDA contents. Collectively, we conclude that ETX increases PLA2 activity, and that the subsequently increased production of PAF was ensued by the remodelling of the lyso PAF resulting in tissue injury by means of oxidative stress in the lungs.

  • PDF

Effect of the Inhibition of PLA2 and PAF on the Neutrophilic Respiratory Burst and Apoptosis (호중구의 Respiratory Burst에 미치는 PLA2 및 PAF와 영향 : In vitro에서의 호중구의 산소기 생성 및 Apoptosis에 관한 연구)

  • Lee, Young-Man;Kim, Sang-Gyung;Park, Yoon-Yub
    • Tuberculosis and Respiratory Diseases
    • /
    • v.48 no.6
    • /
    • pp.887-897
    • /
    • 2000
  • Background : Since the exact pathogenesis of sepsis-induced ARDS has not been elucidated, the mechanisms of enhanced neutrophilic respiratory burst were probed in endotoxin primed neutrophils associated with the roles of phospholipase A2(PLA2), platelet activating factor(PAF) and apoptosis. Methods : In isolated fresh human neutrophils, effects of the inhibition of PLA2 and PAF on the apoptosis were examined by the method of Annexin-FITC/dual PIflow cytometry. The roles of PLA2 and PAF on the neutrophilic respiratory burst were also examined by measuring oxidant generation in cytochrome-c reduction assay. Activities of the PLA2 and lysoPAF acetyltransferase (lysoPAF AT) of the neutrophils were determined to understand the effect of endotoxin on these enzymatic activities which may be related to the neutrophilic respiratory burst and apoptosis. In addition, the role roles of PLA2 and PAF in neutrophilic adhesion to bovine endothelial cells were examined in vitro by neutrophil adhesion assay. To investigate the effect of oxidants on pulmonary surfactant, cytochemical ultrastructural microscopy was performed. To inhibit PLA2 and PAF, non-specific PLA2 inhibitor mepacrine (100 nM) and WEB 2086 (100 nM) or ketotifen fumarate (10 ${\mu}g$/ml) were used respectively in all in vitro experimental sets. WEB 2086 is PAF receptor antagonist, and ketotifen fumarate is a lyso PAF AT inhibitor. Results: The mapacrine treatment, provided and the endotoxin (ETX) treatment, resulted in increased apoptosis of neutrophils (p<0.001) while treatments of WEB 2086 and ketotifen did not. The inhibition of PLA2 and PAF decreased (p<0.001) production of oxidants from PMA-stimulated neutrophils. While endotoxin increased the PLA2 activity of neutrophils (p<0.01), mepacrine supressed (p<0.001) the activity, provided after treatment of ETX. The lyso PAF actyltransferase activity (lyso PAF AT) increased (p<0.01) after treatment of ETX. In contrast, mepacrine, WEB 2086 and ketotifen showed a tendency of decreasing the activity after treatment of ETX. The treatment of ETX incresed (p<0.001) neutrophil adhesion to endothelial cells, which was reversed by inhibition of PLA2 and PAF (p<0.01). The binding of oxidants to pu1monary surfactant was identified histologically. Conclusions : The enhanced neutrophilic respiratory burst by ETX plays a pivotal role in the pathogenesis of ARDS in terms of oxidayive oxidative stress. Increased production of oxidants from neutrophils is mediated by the activations of PLA2 and lyso PAF AT.

  • PDF

Screening of Arachidonic Acid Cascade Related Enzymes Inhibitors from Korean Indigenous Plants (2) (한국 자생식물로부터 아라키돈산 대사계 효소 저해제 검색 (2))

  • 정혜진;문태철;이은경;손건호;김현표;강삼식;배기환;안인파;권동렬
    • YAKHAK HOEJI
    • /
    • v.47 no.2
    • /
    • pp.69-77
    • /
    • 2003
  • Arachidonic acid (AA), which is stored in membrane glycerophospholipids, is liberated by phospholipase $A_2$ (PLA$_2$) enzymes and is sequentially converted to cyclooxygenases (COXs) and lipoxygenases (LOXs) then to various bioactive PGs, and LTs. In order to find the specific inhibitors of AA metabolism especially PLA$_2$, COX-2, 5-LO and lyso PAF acetyltransferase, 120 Korean residential plants extracts were evaluated for their inhibitory activity on PGD$_2$, LTC$_4$ production from cytokine-induced mouse bone marrow-derived mast cells (BMMC) and arachidonic acid released from phospholipid and PAF production from lyso PAF. From this screening procedure, methanol extract of ten indigenous plant such as Salix gracilistyla, Sedum kamtschaticum, Cirsium chanroenicum, Hypericum ascyron, Astilbe chinensis, Agrimonia pilosa, Aristolochia manshuriensis, Vodia daniellii, Pyrola japonica, Styrax obassia were found to inhibit production of inflammatory mediators in vitro assay system.

Gene Expression of Surfactant Protein A, Band C in Platelet-activating Factor(PAF) Treated Rats (Platelet-activating Factor 기도내 투여 후 Surfactant Protein A, B 및 C의 유전자 발현에 관한 연구)

  • Sohn, Jang-Won;Shin, Dong-Ho;Park, Sung-Soo;Lee, Jung-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.2
    • /
    • pp.369-379
    • /
    • 1998
  • Background: Platelet-activating factor(PAF) might play an important role in the development of acute respiratory distress syndrome. Since PAF induced lung injury is similar to changes of acute respiratory distress gyndrome, and abnormalities in surfactant function have been described in acute respiratory distress syndrome, the authors investigated the effects of PAF on the regulation of surfactant protein A, B and C mRNA accumulation Method: The effects of PAF on gene expression of surfactant protein A, B and C in 24 hours after intratracheal injection of PAF in rats. Surfactant protein A, B and C mRNAs were measured by filter hybridization. Results: The accumulation of SP-A mRNA in PAF treated group was significantly decreased by 37.1 % and 41.6%, respectively compared to the control group and the group treated with Lyso-PAF(p<0.025, p<0.01). The accumulation of SP-B mRNA in PAF treated group was decreased by 18.7% and 32.2 %, respectively compared to the control group and the group treated with Lyso-PAF but statistically not significant. The accumulation of SP-C mRNA in PAF treated group was significantly decreased by 30.7% and 38.5%, respectively compared to the control group and the group treated with Lyso-PAF(p<0.l, p<0.01). Conclusion: These findings represent a marked inhibitory effects of platelet-activating factor on surfactant proteins expression in vivo. This supports, in turn, 'platelet-activating factor might be related to pathogenesis of acute respiratory distress syndrome.

  • PDF

Platelet-Activating Factor Enhances Interleukin-1 Activity by Alveolar Macrophages : Inhibition by PAF Specific Receptor Antagonists

  • Lee, Ji-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.201-208
    • /
    • 1997
  • It is becoming increasingly clear that the inflammatory reaction can be ascribed to a complex array of mediators generated and released from activated phagocytes. In this study, the effect of PAF on interleukin-1(IL-1) activity by rat alveolar macrophages(AM) was examined using thymocyte proliferation assay in the supernate of sample obtained after 24 hr culture. When AM were cultured with PAF alone, no change in IL-1 activity was observed. However, the combined addition of PAF and muramyl dipeptide(MDP) or lipopolysaccharide(LPS) to AM cultures markedly enhanced IL-1 activity by 2-3 fold compared with AM cultures with the stimulant alone in a concentration dependent fashion. The peack effect was found at $10^{-8}$ M PAF with MDP and $10^{-14}$ M PAF with LPS. the effect of PAF was also tested in silica, toxic respirable dust, -added AM cultures as well as in the cultures containing bacterial compounds. Although silica did not stimulate the IL-1 activity, PAF could enhance IL-1 activity by 2 fold above the value of the silica-treated AM cultures with the peak response at $10^{-12}$ M PAF. Optimal enhancement of IL-1 activity occured when MDP and PAF were present together at the initiation of the 24 hr AM cultures. Additionaly, the biologically inactive precursor/metabolite of PAF, lyso-PAF failed to induce enhancement of IL-1 activity. When the specific, but structurally different PAF receptor antagonists, BN 52021($10^{-5}$ M) and CV 3988($10^{-5}$ M) was treated 15 min before addition of PAF($10^{-8}$ M) and MDP$(10\;{\mu}g/ml)$ to the AM cultures, it markedly inhibited the enhancement of IL-1 activity induced by PAF. The effects of these PAF antagonists were also observed in LPS$(10\;{\mu}g/ml)$-stimulated cells. Collectively, these data suggest that PAF enhances IL-1 activity by interaction with a specific receptor.

  • PDF

Protective Effect of the Inhibition of PAF Remodeling and Adhesion Molecule on the Oxidative Stress of the Lungs of Rats Given Endotoxin Intratracheally (내독소에 의해 유도된 급성 폐 손상에서 PAF Remodelling 및 Adhesion Molecule의 억제가 폐장내 Oxidative Stress에 미치는 영향)

  • Shin, Tae Rim;Na, Bo Kyung;Lee, Young Man
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.3
    • /
    • pp.276-284
    • /
    • 2005
  • Backgraound : There have been many reports on the pathogenesis of sepsis-induced acute respiratory distress syndrome(ARDS) but, the precise mechanism has not been elucidated. This study examined the protective effect of an inhibition of platelet activating factor(PAF) remodeling and the adhesion molecule on the oxidative stress of the lungs in rats with an endotoxin induced acute lung injury(ALI). Methods : ALI was induced in Sprague-Dawley rats by instilling an E-coli endotoxin into the trachea. Ketotifen and fucoidan were used respectively to inhibit PAF remodeling and adhesion molecule. The lung leak index, lung myeloperoxidase(MPO) activity, bronchoalveolar lavage(BAL) fluid neutrophil count and lyso PAF acetyltransferase activity(AT), were measured and an ultrastructural study and cytochemical electron microscopy were performed. Results : The lung leak index, lung MPO activity, BAL fluid neutrophil count and lyso PAF AT activity was higher in the endotoxin-treated rats. In addition, severe destruction of the pulmonary architecture and increased hydrogen peroxide production were identified. These changes were reversed by ketotifen. However, fucoidan did not appear to have any protective effects. Conclusion : The inhibition of PAF remodeling appeared to be effective in decreasing the endotoxin-induced ALI. In addition, this effect might be derived from the inhibition of neutrophilic oxidative stress. However, the inhibition of the adhesion molecules by fucoidan appeared to be ineffective in decreasing the endotoxin-induced ALI.

Anti-inflammatory Activity of the Flavonoid Components of Lonicera japonica (금은화 플라보노이드성분의 항염증작용)

  • 문태철;박정옥;정광원;손건호;김현표;강삼식;장현욱;정규찬
    • YAKHAK HOEJI
    • /
    • v.43 no.1
    • /
    • pp.117-123
    • /
    • 1999
  • Because of the potent effects of lipid mediators such as prostaglandins (PGs), leukotriens (LTs) and platelet activating factor (PAF) on a variety of cells and tissues, they are considered as major contributors to the process leading to inflammation and allergy. To pursue the mechanism of anti-inflammatory activity of Lonicera japonica, we tested inhibitory effects of 7 flavonoids from Lonicera japonica on arachidonic acid cascade related enzymes, such as inflammatory phospholipase $A_2$, cyclooxygenase-1 and 2, 5-lipoxygenase, in bone marrow derived mast cell (BMMC), and lyso PAF-acetyltransferase in rat spleen microsomes. Anti-inflammatory activities of lonicera japonica are thought to be attributed at least in part to the inhibition of arachidonic acid cascade releated enzymes by flavonoids such as apigenin, luteolin quercetin.

  • PDF

Screening of Arachidonic acid Cascade Related Enzymes Inhibitors from Korean Indigenous Plants(1) (한국 자생식물로부터 아라키돈산 대사계 효소 저해제 검색(1))

  • Moon, Tae-Chul;Jung, Hye-Jin;Lee, Eun-Kyung;Park, Hae-Young;Jeon, Su-Jin;Son, Kun-Ho;Kim, Hyun-Pyo;Bae, Ki-Hwan;Kang, Sam-Sik;Kwon, Dong-Yeul;Chang, Hyeun-Wook
    • Korean Journal of Pharmacognosy
    • /
    • v.34 no.1 s.132
    • /
    • pp.109-117
    • /
    • 2003
  • Arachidonic acid(AA), which is stored in membrane glycerophospholipids, is liberated by phospholipase $A_2(PLA_2)$ enzymes and is sequentially converted to cyclooxygenase (COX) and lipoxygenase (LOX) then to various bioactive prostaglandins (PGs,) and leukotrienes (LTs). In order to find the specific inhibitors of AA metabolism enzymes such as $PLA_2$, COX-2, 5-LO and lyso PAF acetyltransferase. 195 Korean indigenous plant extracts were evaluated for their inhibitory activity on $PGD_2,\;LTC_4$ production from cytokine-induced mouse bone marrow-derived mast cells (BMMC) and arachidonic acid released from phospholipid and PAF production from lyso PAF. From this screening procedure, methanol extract of eight plants such as Saururus chinensis, Aster tataricus, Chrysanthemum cinerariaefolium, Reynoutria japonica, Disocorea nipponica, Epimedium koreanum, impatiens textori, Veronica rotunda var. subintegra were found to inhibit production of inflammatory mediators in vitro assay system.

PAF Contributes to Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury through Neutrophilic Oxidative Stress

  • Lee, Young-Man;Park, Yoon-Yub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.4
    • /
    • pp.405-414
    • /
    • 1999
  • The role of platelet-activating factor (PAF) was investigated in intestinal ischemia/reperfusion (I/R) induced acute lung injury associated with oxidative stress. To induce acute lung injury following intestinal I/R, superior mesenteric arteries were clamped with bulldog clamp for 60 min prior to the 120 min reperfusion in Sprague-Dawley rats. Acute lung injury by intestinal I/R was confirmed by the measurement of lung leak index and protein content in bronchoalveolar lavage (BAL) fluid. Lung leak and protein content in BAL fluid were increased after intestinal I/R, but decreased by WEB 2086, the PAF receptor antagonist. Furthermore, the pulmonary accumulation of neutrophils was evaluated by the measurement of lung myeloperoxidase (MPO) activity and the number of neutrophils in the BAL fluid. Lung MPO activity and the number of neutrophils were increased (p<0.001) by intestinal I/R and decreased by WEB 2086 significantly. To confirm the oxidative stress induced by neutrophilic respiratory burst, gamma glutamyl transferase (GGT) activity was measured. Lung GGT activity was significantly elevated after intestinal I/R (p<0.001) but decreased to the control level by WEB 2086. On the basis of these experimental results, phospholipase $A_2\;(PLA_2),$ lysoPAF acetyltransferase activity and PAF contents were measured to verify whether PAF is the causative humoral factor to cause neutrophilic chemotaxis and oxidative stress in the lung following intestinal I/R. Intestinal I/R greatly elevated $PLA_2$ activity in the lung as well as intestine (p<0.001), whereas WEB 2086 decreased $PLA_2$ activity significantly (p<0.001) in both organs. LysoPAF acetyltransferase activity, the PAF remodelling enzyme, in the lung and intestine was increased significantly (p<0.05) also by intestinal I/R. Accordingly, the productions of PAF in the lung and intestine were increased (p<0.001) after intestinal I/R compared with sham rats. The level of PAF in plasma was also increased (p<0.05) following intestinal I/R. In cytochemical electron microscopy, the generation of hydrogen peroxide was increased after intestinal I/R in the lung and intestine, but decreased by treatment of WEB 2086 in the lung as well as intestine. Collectively, these experimental results indicate that PAF is the humoral mediator to cause acute inflammatory lung injury induced by intestinal I/R.

  • PDF