• Title/Summary/Keyword: Lyapunov stability criteria

Search Result 32, Processing Time 0.026 seconds

Control of Robot Manipulators Using Chattering-Free Sliding Mode (채터링 없는 슬라이딩 모드를 이용한 로봇 매니퓰레이터의 제어)

  • Lee, Gyu-Jun;Gyeong, Tae-Hyeon;Kim, Jong-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.357-364
    • /
    • 2002
  • A new chattering free sliding made control is proposed for robot manipulators. The control input is derived from the reaching law and the Lyapunov stability criteria, which is only composed of continuous terms. It has a chattering free characteristics and a concise farm. In implementing procedures, no change of equations is needed. Thus, it does not degrade the original merits of the sliding mode control. And it is applied to a 2-link SCARA robot manipulator. It is shown that the proposed control has good trajectory tracking performance compared with the PD control and the conventional sliding mode control which uses the boundary layer concept.

Discretization of laser model with bifurcation analysis and chaos control

  • Qamar Din;Waqas Ishaque;Iqra Maqsood;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This paper investigates the dynamics and stability of steady states in a continuous and discrete-time single-mode laser system. By using an explicit criteria we explored the Neimark-Sacker bifurcation of the single mode continuous and discrete-time laser model at its positive equilibrium points. Moreover, we discussed the parametric conditions for the existence of period-doubling bifurcations at their positive steady states for the discrete time system. Both types of bifurcations are verified by the Lyapunov exponents, while the maximum Lyapunov ensures chaotic and complex behaviour. Furthermore, in a three-dimensional discrete-time laser model, we used a hybrid control method to control period-doubling and Neimark-Sacker bifurcation. To validate our theoretical discussion, we provide some numerical simulations.

A fuzzy grey predictor for civil frame building via Lyapunov criterion

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-Yuan;Chen, Timothy
    • Computers and Concrete
    • /
    • v.30 no.5
    • /
    • pp.357-367
    • /
    • 2022
  • In this paper, we propose an efficient control method that can be transformed into a general building control problem for building structure control using these reliability criteria. To facilitate the calculation of controller H∞, an efficient solution method based on Linear Matrix Inequality (LMI) is introduced, namely H∞-based LMI control. In addition, a self-tuning predictive grey fuzzy controller is proposed to solve the problem caused by wrong parameter selection to eliminates the effect of dynamic coupling between degrees of freedom (DOF) in Self-Tuning Fuzzy Controllers. We prove stability using Lyapunov's stability theorem. To check the applicability of the proposed method, the proposed controller is applied and the control characteristics are determined. The simulation assumes system uncertainty in the controller design and emphasizes the use of acceleration feedback as a practical consideration. Simulation results show that the performance of the proposed controller is impressive, stable, and consistent with the performance of LMI-based methods. Therefore, an effective control method is suitable for seismic reinforcement of civil buildings.

Stability and Robust H Control for Time-Delayed Systems with Parameter Uncertainties and Stochastic Disturbances

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min;Lee, Sang-Moon;Cha, Eun-Jong
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.200-214
    • /
    • 2016
  • This paper investigates the problem of stability analysis and robust H controller for time-delayed systems with parameter uncertainties and stochastic disturbances. It is assumed parameter uncertainties are norm bounded and mean and variance for disturbances of them are known. Firstly, by constructing a newly augmented Lyapunov-Krasovskii functional, a stability criterion for nominal systems with time-varying delays is derived in terms of linear matrix inequalities (LMIs). Secondly, based on the result of stability analysis, a new controller design method is proposed for the nominal form of the systems. Finally, the proposed method is extended to the problem of robust H controller design for a time-delayed system with parameter uncertainties and stochastic disturbances. To show the validity and effectiveness of the presented criteria, three examples are included.

Design and Application of the Semi-Continuous Sliding Mode Control(Control of Electromagnetic Suspension Systems) (반-연속 슬라이딩 모드 제어기의 설계 및 적용(자기부상 시스템의 제어))

  • Lee, Kyu-Joon;Kim, Sang-Hwan;Kim, Jong-Shik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.38-46
    • /
    • 2002
  • A new semi-continuous sliding mode control is proposed for electromagnetic suspension systems. The control input is derived from the reaching law and the Lyapunov stability criteria, which is composed of continuous terms and low switching term. It has a low switching gain and chattering fee characteristics. It is shown by the computer simulation that the proposed control has good tracking performance and robustness compared with the classical sliding mode control.

Stability Analysis and Stabilization for Neutral Networked Control System (뉴트럴 네트워크 제어 시스템의 안정도 분석 및 퍼지 제어기 설계)

  • Song, Min-Kook;Kim, Jin-Kyu;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.159-164
    • /
    • 2010
  • This paper focuses on the stability analysis and stabilization for networked control system with neutral type of time-delay. By utilizing the delay partitioning idea, new stability criteria are proposed in terms of linear matrix inequalities(LMIs). These conditions are developed based on the Lyapunov-Krasovskii functionals. Based on the derived criteria, a sufficient condition for te solvability of this problem is obtained in terms of linear matrix inequality without decomposing the original system matrices. Also, it is shown that the proposed controller design method is general for networked control systems. Finally, illustrative examples are presented to show the applicability of the proposed method.

PRACTICAL ${\phi}_0$-STABILITY FOR IMPULSIVE DYNAMIC SYSTEMS WITH TIME SCALES AND INITIAL TIME DIFFERENCE

  • Chen, Weisong;Han, Zhenlai;Sun, Shurong;Li, Tongxing
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.3_4
    • /
    • pp.891-900
    • /
    • 2011
  • In this paper, we study the impulsive dynamic systems on time scales with initial time difference. By employing cone-valued Lyapunov functions, some comparison theorems and several practical ${\phi}_0$-stability criteria for impulsive system on time scales with initial time difference are obtained.

Delay-range-dependent Stability Analysis and Stabilization for Nonlinear Systems : T-S Fuzzy Model Approach (비선형 시스템의 시간 지연 간격에 종속적인 안정도 분석 및 제어기 설계: TS 퍼지 모델 적용)

  • Song, Min-Kook;Park, Jin-Bae;Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.337-342
    • /
    • 2009
  • This paper concerns delay-range-dependent robust stability and stabilization for time-delay nonliner system via T-S fuzzy model approach. The time delay is assumed to be a time-varying continuous function belonging to a given range. On the basis of a novel Lyapunov-Krasovskii functional, which includes the information of the range, delay-range-dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state-feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach.

Tiltrotor Aircraft SCAS Design Using Neural Networks (신경회로망을 이용한 틸트로터 항공기 SCAS 설계)

  • Han, Kwang-Ho;Kim, Boo-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.233-239
    • /
    • 2005
  • This paper presents the design and evaluation of a tiltrotor attitude controller. The implemented response type of the command augumentation system is Attitude Command Attitude Hold. The controller architecture can alleviate the need for extensive gain scheduling and thus has the potential to reduce development time. The control algorithm is constructed using the feedback linearization technique. And an on-line adaptive architecture that employs a neural network compensating the model inversion error caused by the deficiency of full knowledge tiltrotor aircraft dynamics is applied to augment the attitude control system. The use of Lyapunov stability analysis guarantees boundedness of the tracking error and network parameters. The performance of the controller is evaluated against ADS-33E criteria, using the nonlinear tiltrotor simulation code for Bell TR301 developed by KARI. (Korea Aerospace Research Institute)

Adaptive nonsingular sliding mode based guidance law with terminal angular constraint

  • He, Shaoming;Lin, Defu
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.2
    • /
    • pp.146-152
    • /
    • 2014
  • In this paper, a new adaptive nonsingular terminal sliding mode control theory based impact angle guidance law for intercepting maneuvering targets was documented. In the design procedure, a new adaptive law for target acceleration bound estimation was presented, which allowed the proposed guidance law to be used without the requirement of the information on the target maneuvering profiles. With the aid of Lyapunov stability criteria, the finite-time convergent characteristics of the line-of-sight angle and its derivative were proven in theory. Numerical simulations were also performed under various conditions to demonstrate the effectiveness of the proposed guidance law.