• 제목/요약/키워드: Lyapunov stability analysis method

검색결과 144건 처리시간 0.022초

반복 학습을 통한 무인 선박의 제어기 설계에 관한 연구 (A Study on the Controller Design of Unmanned Surface Vessel through Repetitive Learning Method)

  • 김민철
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.850-856
    • /
    • 2018
  • In this paper, a controller based on repetitive learning control is designed to control an unmanned surface vessel with nonlinear characteristics and unknown parameters. First, we define the equations of motion and error system of the unmanned vessel, and then design an repetitive learning controller composed of system error and estimated unknown parameters based on repetitive learning control and adaptive control. The stability of the unmanned vessel model controlled by the designed controller is verified through the analysis of the Lyapunov stability. Simulation shows that the error converges asymptotically to zero with semi-global result, confirming that the unmanned vessel is moving toward a given ideal path, and verifies that the controller is also feasible.

BIFURCATIONS OF STOCHASTIC IZHIKEVICH-FITZHUGH MODEL

  • Nia, Mehdi Fatehi;Mirzavand, Elaheh
    • 호남수학학술지
    • /
    • 제44권3호
    • /
    • pp.402-418
    • /
    • 2022
  • Noise is a fundamental factor to increased validity and regularity of spike propagation and neuronal firing in the nervous system. In this paper, we examine the stochastic version of the Izhikevich-FitzHugh neuron dynamical model. This approach is based on techniques presented by Luo and Guo, which provide a general framework for the bifurcation and stability analysis of two dimensional stochastic dynamical system as an Itô averaging diffusion system. By using largest lyapunov exponent, local and global stability of the stochastic system at the equilibrium point are investigated. We focus on the two kinds of stochastic bifurcations: the P-bifurcation and the D-bifurcations. By use of polar coordinate, Taylor expansion and stochastic averaging method, it is shown that there exists choices of diffusion and drift parameters such that these bifurcations occurs. Finally, numerical simulations in various viewpoints, including phase portrait, evolution in time and probability density, are presented to show the effects of the diffusion and drift coefficients that illustrate our theoretical results.

비선형 시스템을 위한 Takagi-Sugeno 퍼지 샘플치필터 (Takagi-Sugeno Fuzzy Sampled-data Filter for Nonlinear System)

  • 김호준;박진배;주영훈
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.349-354
    • /
    • 2015
  • 본 논문은 비선형 시스템을 위한 T-S 퍼지 샘플치 필터의 안정도 조건을 제시한다. 퍼지 시스템과 퍼지 필터 사이의 에러 시스템을 제시하며, 리아푸노프 안정도 해석 기법을 이용해 에러 시스템의 안정도 조건을 선형행렬부등식의 형태로 표현한다. 제안된 안정도 조건은 기존과는 다른 접근법을 이용하며, 더 나은 성능을 보인다. 모의실험을 통해 제안한 기법의 효용성을 검증한다.

카오스 해석법을 이용한 전방십자인대 재건수술 환자와 정상인의 보행연구 (Gait Study on the Normal and ACL Deficient Patients after Ligament Reconstruction Surgery Using Chaos Analysis Method)

  • 고재훈;손권;박정홍;서정탁
    • 한국정밀공학회지
    • /
    • 제23권2호
    • /
    • pp.164-171
    • /
    • 2006
  • Anterior cruciate ligament(ACL) injury of the knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is used to identify the result of surgery. The purpose of this study is to numerically evaluate and classify knee condition of patients through the chaos analysis. Experiments were carried out for 13 subjects (8 healthy subjects, 5 ACL deficient patients) walking on a treadmill. Sagittal kinematic data of the right lower extremity were collected by using a 3D motion analysis system. The recorded gait patterns were digitized and then coordinated by KWON3D. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. It was found that the Lyapunov exponent becomes larger as the knee condition becomes worse. This study suggested a method of the severity of injury and the level of recovery. The proposed method discerns difference between healthy subjects and patients.

비젼을 이용한 로봇 매니퓰레이터의 강인 제어 (Robust Control of Robot Manipulators using Visual Feedback)

  • 지민석;이영찬;이강웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.247-250
    • /
    • 2003
  • In this paper, we propose a robust controller for motion control of n-link robot manipulators using visual feedback. The desired joint velocity and acceleration is obtained by the feature-based visual systems and is used in the joint velocity control loop for trajectory control of the robot manipulator. We design a robust controller that compensates for bounded parametric uncertainties of robot dynamics. The stability analysis of robust joint velocity control system is shown by Lyapunov Method. The effectiveness of the proposed method is shown by simulation results on the 5-link robot manipulators with two degree of freedom.

  • PDF

전방십자인대 재건수술 환자와 정상인의 보행 연구 (Gait Study on the Normal and ACL Deficient Patients After Ligament Reconstruction Surgery Using Chaos Analysis Method)

  • 고재훈;문병영;서정탁;손권
    • 대한기계학회논문집A
    • /
    • 제30권4호
    • /
    • pp.435-441
    • /
    • 2006
  • The anterior cruciate ligament(ACL) is an important stabilizer of knee joint. The ACL injury of knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is essential to identify knee condition of patients who display abnormal gait. The purpose of this study is to evaluate and classify knee condition of ACL deficient patients using a nonlinear dynamic method. The nonlinear method focuses on understanding how variations in the gait pattern change over time. The experiments were carried out for 17 subjects(l2 healthy subjects and five subjects with unilateral deficiency) walking on a motorized treadmill for 100 seconds. Three dimensional kinematics of the lower extremity were collected by using four cameras and KWON 3D motion analysis system. The largest Lyapunov exponent calculated from knee joint flexion-extension time series was used to quantify knee stability. The results revealed the difference between healthy subjects and patients. The deficient knee was significantly unstable compared with the contralateral knee. This study suggests an evaluation scheme of the severity of injury and the level of recovery. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

NEW RESULT CONCERNING MEAN SQUARE EXPONENTIAL STABILITY OF UNCERTAIN STOCHASTIC DELAYED HOPFIELD NEURAL NETWORKS

  • Bai, Chuanzhi
    • 대한수학회보
    • /
    • 제48권4호
    • /
    • pp.725-736
    • /
    • 2011
  • By using the Lyapunov functional method, stochastic analysis, and LMI (linear matrix inequality) approach, the mean square exponential stability of an equilibrium solution of uncertain stochastic Hopfield neural networks with delayed is presented. The proposed result generalizes and improves previous work. An illustrative example is also given to demonstrate the effectiveness of the proposed result.

Stability Analysis of Visual Servoing with Sliding-mode Estimation and Neural Compensation

  • Yu Wen
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.545-558
    • /
    • 2006
  • In this paper, PD-like visual servoing is modified in two ways: a sliding-mode observer is applied to estimate the joint velocities, and a RBF neural network is used to compensate the unknown gravity and friction. Based on Lyapunov method and input--to-state stability theory, we prove that PD-like visual servoing with the sliding mode observer and the neuro compensator is robust stable when the gain of the PD controller is bigger than the upper bounds of the uncertainties. Several simulations are presented to support the theory results.

태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석 (Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems)

  • 조현철;유수복;이권순
    • 제어로봇시스템학회논문지
    • /
    • 제15권12호
    • /
    • pp.1175-1183
    • /
    • 2009
  • In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.

Luapunov 직접법에 의한 전력계통 전압안정도 해석 (A Study on Power System Voltage Stability Analysis by the Direct Lyapunov Function)

  • 문영현;박능수;이태식
    • 대한전기학회논문지
    • /
    • 제43권5호
    • /
    • pp.693-702
    • /
    • 1994
  • This paper deals with direct voltage stability analysis using a power system energy function. The structure preserved energy function is proposed as an energy function for voltage stability analysis. With the use of the proposed energy function voltage collapse conditions are derived, which yields the exactly same results with the Jacobian matrix approach. The voltage collapse phenomenon is analyzed by several methods, which shows that all of the methods produce the same voltage condition. This study also investigates the voltage collapse dynamics by using the proposed energy function. As a result, it has been found that the voltage collapse can be classified into two categories: static and dynamic instablilties which have quite different behaviors. In addition a new method is presented to calculate the power capacity limit of transmission lines with respect to voltage stability. The proposed method is tested for a 2-bus sample system, which shows the characteristics of voltage collapse phenomenon via the energy function.