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NEW RESULT CONCERNING MEAN SQUARE

EXPONENTIAL STABILITY OF UNCERTAIN STOCHASTIC

DELAYED HOPFIELD NEURAL NETWORKS

Chuanzhi Bai

Abstract. By using the Lyapunov functional method, stochastic analy-
sis, and LMI (linear matrix inequality) approach, the mean square expo-
nential stability of an equilibrium solution of uncertain stochastic Hopfield

neural networks with delayed is presented. The proposed result general-
izes and improves previous work. An illustrative example is also given to
demonstrate the effectiveness of the proposed result.

1. Introduction

In practical implementation of neural networks, the weight coefficients of the
neurons depend on certain resistance and capacitance values, which are subject
to uncertainties. It is important to ensure that the designed network is stable
in the presence of these uncertainties. For the parameter uncertainties, there
have been a great deal of robust stability criteria proposed by many researchers,
see for example [1, 3, 8, 12, 15, 16, 17] and the references therein.

In the past few years, neural networks with stochastic perturbations have
attracted increasing research attention in the neural network community since,
in real nervous systems, the synaptic transmission is a noisy process brought
on by random fluctuations from the release of neurotransmitters and other
probabilistic causes. It has been revealed in [2] that a neural network could be
stabilized or destabilized by certain stochastic inputs.

Accordingly, the stability analysis problem for stochastic neural networks
and the synchronization problem for delayed neural networks with stochastic
perturbation have been an important research issue, and some preliminary
results have been published, see, for example, [6, 7, 9, 10, 13, 14, 20, 22, 23].

Recently, Wan and Sun [19] studied the mean square exponential stability
of stochastically perturbed Hopfield-type neural networks with constant fixed
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time delays

(1)

dxi(t) = [−cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijgj(xj(t− τj))]dt

+
n∑

j=1

σij(xj(t))dwj(t),

xi(t) = ξi(t), −τ ≤ t ≤ 0, i = 1, 2, . . . , n,

by means of variation parameter, inequality technique and stochastic analysis.
In this paper, motivated by [12], [17], [19], we consider the problem of mean

square exponential stability for a class of uncertain stochastic Hopfield neural
networks with discrete delays. By using the Lyapunov functional technique and
stochastic analysis, an unified LMI approach is developed to establish sufficient
conditions for the neural networks to be robustly, exponentially stable in the
mean square. This condition is in terms of LMI, which can be readily verified
by using standard numerical software [4], [5]. In the special case with certain
case, the LMI condition given in this paper generalizes and improves those
given in [19], [23].

2. Model description and preliminaries

Consider the following uncertain stochastic Hopfiled-type neural networks
with fixed time delays

(2)

dxi(t) = [−cixi(t) +
n∑

j=1

(aij +∆aij)fj(xj(t))

+
n∑

j=1

(bij +∆bij)fj(xj(t− τj))]dt+
n∑

j=1

σij(xj(t))dwj(t),

xi(t) = ξi(t), −τ ≤ t ≤ 0, i = 1, 2, . . . , n,

or equivalently,

(3)

dx(t) = [−Cx(t) + (A+∆A)f(x(t)) + (B +∆B)f(x(t− τ))]dt

+ σ(x(t))dw(t),

x(t) = ξ(t), −τ ≤ t ≤ 0,

where

x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ Rn,

is the state vector, n denotes the number of neurons, and the superscript T to
any vector (or matrix) denotes the transpose of that vector (or matrix),

f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))
T ,

is the neuron activation function, while f(x(t− τ)) denotes

f(x(t− τ)) = (f1(x1(t− τ1)), f2(x2(t− τ2)), . . . , fn(xn(t− τn)))
T ,



MEAN SQUARE EXPONENTIAL STABILITY 727

and
ξ(t) = (ξ1(t), ξ2(t), . . . , ξn(t))

T ,

is the initial condition; τi, i = 1, 2, . . . , n, are the transmission delays, τ =
max1≤i≤n τi; C = diag(c1, c2, . . . , cn) is a positive definite diagonal matrix,
ci represents the rate with which the ith unit will reset its potential to the
resting state in isolation when disconnected from the network and the external
stochastic perturbation; A = (aij)n×n ∈ Rn×n is referred to as the feedback
matrix, B = (bij)n×n ∈ Rn×n represents the delayed feedback matrix, aij and
bij , i, j = 1, 2, . . . , n, represent the weight coefficients of the neurons; ∆A =
(∆aij) and ∆B = (∆bij) denote respectively, the parametric uncertainties in
A and B. Moreover, σ(x) = (σij(xj))n×n, and

w(t) = (w1(t), w2(t), . . . , wn(t))
T

is n-dimensional Brownian motion defined on a complete probability space
(Ω,F , P ) with a natural filtration {Ft}t≥0 generated by {w(s) : 0 ≤ s ≤ t},
where we associate Ω with the canonical space generated by w(t), and denote by
F the associated σ-algebra generated by {w(t)} with the probability measure
P . Note that, ξ = {ξ(s) : −τ ≤ s ≤ 0} is C([−τ, 0];Rn)-valued function,
which is F0-measurable Rn-valued random variables, where C([−τ, 0];Rn) is
the space of all continuous Rn-value functions defined on [−τ, 0] with a norm
∥ξ∥τ = sup{|ξ(t)| : −τ ≤ t ≤ 0} and |x| is the Euclidean norm of a vector
x ∈ Rn. ξ ∈ L2

F0
([−τ, 0],Rn), where L2

F0
([−τ, 0],Rn) is a Rn-valued stochastic

process.
For the vector x(t) = (x1(t), x2(t), . . . , xn(t))

T and the matrix A, we define
the norms as follows:

|x(t)| =

[
n∑

i=1

|xi(t)|2
]1/2

, ∥A∥ = sup{|Ax| : |x| = 1} =
√
λmax(ATA),

where λmax(·) (respectively, λmin(·)) means the largest (respectively, smallest)
eigenvalue of A.

Throughout this paper, let us list the following assumption:
(H1) fi(0) = σij(0) = 0, fi and σij are Lipschitz-continuous with Lipschitz

constant li > 0 and νij > 0, respectively, for i, j = 1, 2, . . . , n.

It follows from [18], [21] that under the Assumption (H1), (3) has a unique
global solution on t ≥ 0, which is denoted by x(t; ξ), or, x(t) if no confusion
occurs. Clearly, (3) admits an equilibrium solution x(t) ≡ 0.

We are now ready to introduce the notion of robust global stability for the
stochastic neural network (3) with parameter uncertainties and time-delays.

Definition 2.1. For the neural network (3) and every ξ ∈ L2
F0
([−τ, 0],Rn),

the trivial solution (equilibrium point) is robustly, globally stable in the mean
square if there exists a pair of positive constants λ and c such that

E|x(t, ξ)|2 ≤ cE|ξ|2e−λt, t ≥ 0.
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Let C2,1(Rn × R+; R+) denote the family of all nonnegative functions
V (x, t) on Rn × R+ which is continuously twice differentiable in x and one
differentiable in t. For each V ∈ C2,1([−τ,∞) × Rn; R+), define an operator
φV , associated with the stochastic delayed Hopfield neural networks (3), from
R+ × C([−τ, 0]; Rn) to R by

φV = Vt(t, x) + Vx(t, x)[−Cx(t) +Af(x(t)) +Bf(x(t− τ))]

+
1

2
trace[σ(x)TVxx(t, x)σ(x)],

where

A = A+∆A, B = B +∆B,

Vt(t, x) =
∂V (t, x)

∂t
, Vx(t, x) =

(
∂V (t, x)

∂x1
,
∂V (t, x)

∂x2
, . . . ,

∂V (t, x)

∂xn

)
,

Vxx(t, x) =

(
∂2V (t, x)

∂xi∂xj

)
.

In the following, P > Q (P ≥ Q) means that the matrix P − Q is positive
definite (P−Q is semi-positive definite, respectively), 0 denotes the null matrix
or null vector of appropriate dimension, and I denotes the identity matrix of
appropriate dimension.

The uncertainty ∆A is assumed to satisfy

(4) ∆A = HFE,

where H and E are known constant matrices of appropriate dimensions, and F
is an unknown matrix representing the parameter uncertainty, which satisfies

(5) FTF ≤ I.

The uncertainty model of (4) and (5) is well known [21]. The matrices H
and E characterize how the uncertain parameters in F enter A. The F can
always be restricted as (5) by appropriate choosing H and E, i.e., there is no
loss of generality in choosing F as in (5). Similarly, the uncertainty ∆B is
assumed to be of the form

∆B = H1F1E1, (F1)
TF1 ≤ I.

In order to obtain our main result, we need the following lemmas:

Lemma 2.2 ([4]). For a given matrix S =
[
S11 S12

ST
12 S22

]
with S11 = ST

11, S22 = ST
22,

then the following conditions are equivalent:

(i) S < 0;
(ii) S22 < 0, S11 − S12S

−1
22 ST

12 < 0.

Lemma 2.3 ([18]). Let U, V,W , and M be real matrices of appropriate dimen-
sions with M satisfying M = MT . Then

M + UVW +WTV TUT < 0
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for all V TV ≤ I if and only if there exists a scalar ε > 0 such that

M + ε−1UUT + εWTW < 0.

3. Main result

Theorem 3.1. Suppose that (H1) holds. If there exist positive definite matrix
P > 0, positive definite diagonal matrix D = diag{di > 0} ∈ Rn×n, positive
semidefinite diagonal matrix K = diag{ki ≥ 0} ∈ Rn×n, and positive scalars
δ > 0, ε > 0 and ε1 > 0 such that the following LMI:
(6)

−2PC + δI PA+K PB PH1 PH
ATP +K D + εETE − 2KL 0 0

BTP 0 −D + ε1E
T
1 E1 0 0

HT
1 P 0 0 −ε1I 0

HTP 0 0 0 −εI

 < 0,

where L = diag(1/l1, 1/l2, . . . , 1/ln) (li are as in (H1)). Moreover, if

(7) max
1≤j≤n

n∑
i=1

ν2ij ≤
δ

∥P∥

holds, where νij are as in (H1). Then the dynamics of the neural network (3)
is robustly, globally stable in the mean square.

Proof. Firstly, we will prove that (6) holds which implies

(8) N =

 2PC − δI −PA−K −PB
−(A)TP −K −D + 2KL 0

−(B)TP 0 D

 > 0.

Indeed, according to Lemma 2.2 (Schur complement), (6) is equivalent to

−


2PC − δI −PA−K −PB −PH1

−ATP −K −D + 2KL− εETE 0 0
−BTP 0 D − ε1E

T
1 E1 0

−HT
1 P 0 0 ε1I



+


−PH
0
0
0

 ε−1I[−HTP 0 0 0] < 0,
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which can be written as

(9)

−


2PC − δI −PA−K −PB −PH1

−ATP −K −D + 2KL 0 0
−BTP 0 D − ε1E

T
1 E1 0

−HT
1 P 0 0 ε1I



+ ε−1


PH
0
0
0

 [HTP 0 0 0] + ε


0
ET

0
0

 [0 E 0 0] < 0.

From (9) and Lemma 2.3, noting that FTF ≤ I, we get

(10)

−


2PC − δI −PA−K −PB −PH1

−ATP −K −D + 2KL 0 0
−BTP 0 D − ε1E

T
1 E1 0

−HT
1 P 0 0 ε1I



+


PH
0
0
0

F [0 E 0 0] +


0
ET

0
0

FT [HTP 0 0 0] < 0,

which implies

(11) −


2PC − δI −PA−K −PB −PH1

−(A)TP −K −D + 2KL 0 0
−BTP 0 D − ε1E

T
1 E1 0

−HT
1 P 0 0 ε1I

 < 0.

Using Lemma 2.2 again, (11) is equivalent to

−

 2PC − δI −PA−K −PB
−(A)TP −K −D + 2KL 0

−BTP 0 D − ε1E
T
1 E1


+

 −PH1

0
0

 ε−1
1 I[−HT

1 P 0 0] < 0,

which can be written as

(12)

−

 2PC − δI −PA−K −PB
−(A)TP −K −D + 2KL 0

−BTP 0 D


+ ε−1

1

 PH1

0
0

 [HT
1 P 0 0] + ε1

 0
0
ET

1

 [0 0 E1] < 0.
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By (12) and Lemma 2.3, similar to that of (10) and (11), we obtain that

−

 2PC − δI −PA−K −PB
−(A)TP −K −D + 2KL 0

−(B)TP 0 D

 < 0,

that is N > 0, a.e., (8) holds.
Secondly, we construct the following positive definite Lyapunov functional:

(13) V (t, x(t)) = xT (t)Px(t) +

n∑
i=1

di

∫ t

t−τi

f2
i (xi(s))ds,

where P = PT > 0 and di > 0, i = 1, 2, . . . , n. By (H1) and condition (7), we
get that

(14)

1

2
trace(σT (x(t))Vxxσ(x(t))) = trace(σT (x(t))Pσ(x(t)))

≤ ∥P∥trace(σT (x(t))σ(x(t)) ≤ ∥P∥
n∑

i=1

n∑
j=1

σ2
ij(xj(t))

≤ ∥P∥ max
1≤j≤n

n∑
i=1

ν2ij

2∑
j=1

x2
j (t) = ∥P∥ max

1≤j≤n

n∑
i=1

ν2ijx
T (t)x(t)

≤ δxT (t)Ix(t).

By Ito’s formula and (14), we can calculate φV along system (3):

(15)

φV = 2xT (t)P [−Cx(t) +Af(x(t)) +Bf(x(t− τ))] + fT (x(t))Df(x(t))

− fT (x(t− τ))Df(x(t− τ)) +
1

2
traceσT (x(t))Vxx(t, x)σ(x(t))

≤ −2xT (t)PCx(t) + 2xT (t)PAf(x(t)) + 2xT (t)PBf(x(t− τ))

+ fT (x(t))Df(x(t))− fT (x(t− τ))Df(x(t− τ)) + δxT (t)Ix(t).

After some rearrangement, (15) can be expressed as

(16)
φV ≤ −[xT (t) fT (x(t)) fT (x(t− τ))]N

 x(t)
f(x(t))

f(x(t− τ))


− 2fT (x(t))K[x(t)− Lf(x(t))],

where K = diag{ki} ∈ Rn×n is a positive semi-definite diagonal matrix (ki ≥
0, i = 1, 2, . . . , n), and N as in (8). Since N > 0, there exists a constant δ∗ > 0
such that

(17) N −

 δ∗I 0 0
0 0 0
0 0 0

 > 0.
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Owing to (H1), the last term of (16) is non-positive. So, from (16) and (17),
we get

(18) φV ≤ −δ∗x
T (t)x(t) = −δ∗|x(t)|2.

By (H1), one can compute

(19)

n∑
i=1

di

∫ t

t−τi

f2
i (xi(s))ds =

n∑
i=1

di

∫ 0

−τi

f2
i (xi(t+ s))ds

≤
n∑

i=1

dil
2
i

∫ 0

−τi

x2
i (t+ s)ds ≤

∫ 0

−τ

n∑
i=1

dil
2
i x

2
i (t+ s)ds

=

∫ 0

−τ

x(t+ s)TGx(t+ s)ds,

where G = diag(d1l
2
1, d2l

2
2, . . . , dnl

2
n) > 0. It is easy to check that there exists

a unique positive number γ > 0 such that

(20) γ∥P∥+ ∥G∥eγτ = δ∗ + ∥G∥,
where δ∗ > 0 as in (17).

The Ito’s formula shows that for any t ≥ 0

(21)

eγtV (t, x(t)) = V (0, x(0)) +

∫ t

0

eγs[γV (s, x(s)) + φV (s, x(s))]ds

+

∫ t

0

eγsVx(x(s), s)σ(x(s))dw(s).

Taking expectations in (21), we get

(22)

E(eγtV (t, x(t))) ≤ E(ξT(0)Pξ(0)) + ∥G∥
∫ 0

−τ

E|ξ(s)|2ds

− [δ∗ − γ∥P∥]
∫ t

0

eγsE|x(s)|2ds

+ γ

∫ t

0

eγsds

∫ 0

−τ

ExT(s+ θ)Gx(s+ θ)dθ.

For t ≥ 0, we have

(23)

∫ t

0

eγsds

∫ 0

−τ

ExT(s+ θ)Gx(s+ θ)dθ

=

∫ t

0

ExT(u)Gx(u)du

∫ u+τ

u

eγsds+

∫ 0

−τ

ExT(u)Gx(u)du

∫ u+τ

0

eγsds

≤eγτ − 1

γ
∥G∥

∫ t

0

eγuE|x(u)|2du+
eγτ − 1

γ
∥G∥

∫ 0

−τ

E|ξ(u)|2du.

Substituting (20) and (23) into (22), we obtain

E(eγtV (t, x(t)) ≤ c,
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where

c = E(ξT(0)Pξ(0)) + eγτ∥G∥
∫ 0

−τ

E|ξ(s)|2ds < ∞,

since ξ ∈ L2
F0
([−τ, 0],Rn), a.e.,

∫ 0

−τ
E|ξ(s)|2ds < ∞. Hence, we have from the

definition of V that

E|x(t)|2 ≤ c(λmin(P ))−1e−γt, t ≥ 0,

that is, Eq. (3) is exponentially stable in mean square. □

4. An example and remarks

In this section, we will make some comments and give an example to illus-
trate that the conditions given in this paper are more useful as compared with
those in [19], [23].

Example 4.1. Consider a two-neural delayed stochastic neural network with
parameter uncertainties

(24)

d

(
x1(t)
x2(t)

)
= − C

(
x1(t)
x2(t)

)
dt+ (A+△A)

(
f1(x1(t))
f2(x2(t))

)
dt

+ (B +△B)

(
f1(x1(t− τ1))
f2(x2(t− τ2))

)
dt+

(
ν11x1(t) ν12x2(t)
ν21x1(t) ν22x2(t)

)
dw(t),

where

C =

(
0.9 0
0 0.8

)
, A =

(
0 −1
−1 −1

)
, B =

(
0 0.1

−0.1 0

)
,

△A = HFE, △B = H1F1E1,

E =

(
0.2 0
0 0.1

)
, H =

(
0.3 0
0 0.2

)
,

E1 =

(
0.1 0.1
0 0

)
, H1 =

(
0 0

−0.1 −0.1

)
.

F, F1 are two unknown matrix representing the parameter uncertainty, which
satisfy

FTF ≤ I, FT
1 F1 ≤ I,

(25) f1(x) = 0.909 arctanx, f2(x) = sinx,

(26) ν11 = 0.2, ν12 = 0.2, ν21 = 0.25, ν22 = 0.15.

The activation functions fi in this example are satisfy Assumption (H1) with

(27) l1 = 0.9093, l2 = 1.

Thus, we have L =

[
1.1 0
0 1

]
.
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By using the Matlab toolbox, we find a solution to the LMI (6) are as follows:

P =

[
3.4241 −0.9874
−0.9874 2.5831

]
, D =

[
1.0791 0

0 1.0791

]
,

K =

[
2.8799 0

0 2.8799

]
, δ = 0.4104, ε = 3.5085, ε1 = 3.1974.

Since the Lipschitz constants of functions σij (i, j = 1, 2) in this example with
νij , we have

max
1≤j≤2

2∑
i=1

ν2ij = 0.085 <
δ

∥P∥
= 0.093.

Therefore, by Theorem 3.1 in this paper, we have that the delayed stochastic
neural network (24) with parameter uncertainties is robustly global stable in
square mean.

Remark 4.1. In Example 4.1, if we choose F = F1 = ( 1 0
0 0 ), then it is easy to

check that FTF ≤ I and FT
1 F1 ≤ I. Moreover, we obtain

△A = HFE =

(
0.06 0
0 0.02

)
, △B = H1F1E1 =

(
0 0

−0.01 −0.01

)
,

and

A = A+△A = (āij) =

(
0.06 −1
−1 −0.98

)
,

B = B +△B = (b̄ij) =

(
0 0.1

−0.11 −0.01

)
.

Thus, network (24) reduces to
(28)

d

(
x1(t)
x2(t)

)
= −

(
0.9 0
0 0.8

)(
x1(t)
x2(t)

)
dt+

(
0.06 −1
−1 −0.98

)(
f1(x1(t))
f2(x2(t))

)
dt

+

(
0 0.1

−0.11 −0.01

)(
f1(x1(t− τ1))
f2(x2(t− τ2))

)
dt+

(
ν11x1(t) ν12x2(t)
ν21x1(t) ν22x2(t)

)
dw(t)

fi and νij are as in (25) and (26), respectively. By Example 4.1, we know
that the delayed stochastic neural network (28) is exponentially stable in mean
square.

But, the criteria of exponentially stable in mean square in [18] fail in neural
network (28). In fact, we have

L̄ = (4ν2ij) =

(
0.16 0.25
0.16 0.09

)
,

D1 = diag(4a1c
−1
1 , 4a2c

−1
2 ) = diag(4.4578, 9.1315),

D2 = diag(4b1c
−1
1 , 4b2c

−1
2 ) = diag(0.0444, 0.05),
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where

ai =
2∑

j=1

ā2ij l
2
j , bi =

2∑
j=1

b̄2ij l
2
j , i = 1, 2,

lj are as in (27), c1 = 0.9 and c2 = 0.8. Thus,

ρ(C−1(D1K̄ +D2K̄ + L̄)) = 16.8657 > 1,

where K̄ = ( 1 1
1 1 ), ρ(M) denotes the spectral radius of a square matrix M .

Hence the condition given in Theorem 3.1 in [19] is not satisfied. This implies
that the obtained result generalizes and improves those given in [19].

Remark 4.2. For a two-neural delayed stochastic neural network (28), according
to the notation of the paper [23], we have

c1 = 0.9, c2 = 0.8, a11 = 0.06, a12 = −1, a21 = −1, a22 = −0.98,

b11 = 0, b12 = 0.1, b21 = −0.11, b22 = −0.01, α1 = α2 = 0.9093,

β1 = β2 = 1, L11 = 0.2, L12 = 0.2, L21 = 0.25, L22 = 0.15.

Thus, we obtain that

− 2c1 +
2∑

j=1

|a1j |αj +
2∑

j=1

|aj1|α1 +
2∑

j=1

|b1j |βj +
2∑

j=1

|bj1|β1 +
2∑

j=1

L2
j1

= 0.4402 > 0,

− 2c2 +
2∑

j=1

|a2j |αj +
2∑

j=1

|aj2|α2 +
2∑

j=1

|b2j |βj +
2∑

j=1

|bj2|β2 +
2∑

j=1

L2
j2

= 2.2933 > 0,

which implies that the condition (A2) of Theorem 3.1 in [23] is not satisfied.
Hence the criteria of exponentially stable in mean square in [23] fail in neural
network (28). But, by Example 4.1, we know that the delayed stochastic neural
network (28) is exponentially stable in mean square. So, our result obtained
here generalizes and improves those given in [23].

Acknowledgement. The author would like to thank the referees for their
valuable suggestions and comments.
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