References
- M. Basin, J. Perez, and R. Martinez-Zuniga, Optimal filtering for nonlinear polynomial systems over linear observations with delay, Int. J. Innovative Comput. Inform. Control 2 (2006), no. 4, 863-874.
- S. Blythe, X. Mao, and X. X. Liao, Stability of stochastic delay neural networks, J. Franklin Inst. 338 (2001), no. 4, 481-495. https://doi.org/10.1016/S0016-0032(01)00016-3
- E. K. Boukas and N. F. Al-Muthairi, Delay-dependent stabilization of singular linear systems with delays, Int. J. Innovative Comput. Inform. Control 2 (2006), no. 2, 283-291.
- S. Boyd, L. EI Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM Philadelphia, PA, 1994.
- P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox: for Use with Matlab, The Math Works, Natick, 1995.
- C. Huang, P. Chen, Y. He, L. Huang, and W. Tan, Almost sure exponential stability of delayed Hopfield neural networks, Appl. Math. Lett. 21 (2008), no. 7, 701-705. https://doi.org/10.1016/j.aml.2007.07.030
- H. Huang, D. W. C. Ho, and J. Lam, Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays, IEEE Trans. Circuits Syst. II 52 (2005), no. 5, 251-255. https://doi.org/10.1109/TCSII.2005.846305
- O. M. Kwon, J. H. Park, and S. M. Lee, On delay-dependent robust stability of uncertain neutral systems with interval time-varying delays, Appl. Math. Comput. 203 (2008), no. 2, 843-853. https://doi.org/10.1016/j.amc.2008.05.094
- T. Li, A. Song, and S. Fei, Robust stability of stochastic Cohen-Grossberg neural networks with mixed time-varying delays, Neurocomputing 73 (2009), no. 1-3, 542-551. https://doi.org/10.1016/j.neucom.2009.07.007
-
X. Liu and T. Chen, Robust
$\mu$ -stability for uncertain stochastic neural networks with unbounded time-varying delays, Phys. A. 387 (2008), no. 12, 2952-2962. https://doi.org/10.1016/j.physa.2008.01.068 - X. Mao, Exponential Stability of Stochastic Differential Equations, Marcel Dekker, New York, 1994.
- J. H. Park, Further note on global exponential stability of uncertain cellular neural networks with variable delays, Appl. Math. Comput. 188 (2007), no. 1, 850-854. https://doi.org/10.1016/j.amc.2006.10.036
- J. H. Park and O. M. Kwon, Synchronization of neural networks of neutral type with stochastic perturbation, Modern Phys. Lett. B 23 (2009), no. 14, 1743-1751. https://doi.org/10.1142/S0217984909019909
- J. H. Park, S. M. Lee, and H. Y. Jung, LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks, J. Optim. Theory Appl. 143 (2009), no. 2, 357-367. https://doi.org/10.1007/s10957-009-9562-z
- J. Qiu, J. Zhang, and P. Shi, Robust stability of uncertain linear systems with time-varying delay and nonlinear perturbations, Proc. IMechE, Part I, J. Syst. Control Eng. 220 (2006), no. 5, 411-416. https://doi.org/10.1243/09596518JSCE217
- V. Singh, Novel LMI condition for global robust stability of delayed neural networks, Chaos Solitons Fractals 34 (2007), no. 2, 503-508. https://doi.org/10.1016/j.chaos.2006.03.034
- V. Singh, Global robust stability of delayed neural networks: An LMI approach, IEEE Trans. Circuits Syst. II 52 (2005), no. 1, 33-36. https://doi.org/10.1109/TCSII.2004.840118
- V. Singh, Robust stability of cellular neural networks with delay: linear matrix inequality approach, IEE Proc. Contr. Theory Appl. 151 (2004), no. 1, 125-129. https://doi.org/10.1049/ip-cta:20040091
- L. Wan and J. Sun, Mean square exponential stability of stochastic delayed Hopfield neural networks, Phys. Lett. A 343 (2005), 306-318. https://doi.org/10.1016/j.physleta.2005.06.024
- Z. Wang, S. Lauria, J. Fang, and X. Liu, Exponential stability of uncertain stochastic neural networks with mixed time-delays, Chaos Solitons Fractals 32 (2007), no. 1, 62-72. https://doi.org/10.1016/j.chaos.2005.10.061
- Z. Wang, Y. Liu, K. Fraser, and X. Liu, Stochastic stability of unicertain Hopfield neural networks with discrete and distributed delays, Phys. Lett. A 354 (2006), no. 4, 288-297. https://doi.org/10.1016/j.physleta.2006.01.061
- J. Zhang, P. Shi, and J. Qiu, Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays, Nonlinear Anal. Real World Appl. 8 (2007), no. 4, 1349-1357. https://doi.org/10.1016/j.nonrwa.2006.06.010
- Q. Zhou and L. Wan, Exponential stability of stochastic delayed Hopfield neural net-works, Appl. Math. Comput. 199 (2008), no. 1, 84-89. https://doi.org/10.1016/j.amc.2007.09.025