• Title/Summary/Keyword: Lyapunov stability Analysis

Search Result 236, Processing Time 0.023 seconds

Delay-range-dependent Stability Analysis and Stabilization for Nonlinear Systems : T-S Fuzzy Model Approach (비선형 시스템의 시간 지연 간격에 종속적인 안정도 분석 및 제어기 설계: TS 퍼지 모델 적용)

  • Song, Min-Kook;Park, Jin-Bae;Kim, Jin-Kyu;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.337-342
    • /
    • 2009
  • This paper concerns delay-range-dependent robust stability and stabilization for time-delay nonliner system via T-S fuzzy model approach. The time delay is assumed to be a time-varying continuous function belonging to a given range. On the basis of a novel Lyapunov-Krasovskii functional, which includes the information of the range, delay-range-dependent stability criteria are established in terms of linear matrix inequality. It is shown that the new criteria can provide less conservative results than some existing ones. Moreover, the stability criteria are also used to design the stabilizing state-feedback controllers. Numerical examples are given to demonstrate the applicability of the proposed approach.

Control of Quadrotor UAV Using Adaptive Sliding Mode with RBFNN (RBFNN을 가진 적응형 슬라이딩 모드를 이용한 쿼드로터 무인항공기의 제어)

  • Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.185-193
    • /
    • 2022
  • This paper proposes an adaptive sliding mode control with radial basis function neural network(RBFNN) scheme to enhance the performance of position and attitude tracking control of quadrotor UAV. The RBFNN is utilized on the approximation of nonlinear function in the UAV dynmic model and the weights of the RBFNN are adjusted online according to adaptive law from the Lyapunov stability analysis to ensure the state hitting the sliding surface and sliding along it. In order to compensate the network approximation error and eliminate the existing chattering problems, the sliding mode control term is adjusted by adaptive laws, which can enhance the robust performance of the system. The simulation results of the proposed control method confirm the effectiveness of the proposed controller which applied for a nonlinear quadrotor UAV is presented. Form the results, it's shown that the developed control system is achieved satisfactory control performance and robustness.

Design of the Adaptive Fuzzy Control Scheme and its Application on the Steering Control of the UCT (무인 컨테이너 운송 조향 제어의 적응 퍼지 제어와 응용)

  • 이규준;이영진;윤영진;이원구;김종식;이만형
    • Journal of Korean Port Research
    • /
    • v.15 no.1
    • /
    • pp.37-46
    • /
    • 2001
  • Fuzzy logic control(FLC) is composed of three parts : fuzzy rule-bases, membership functions, and scaling factors. Well-defined fuzzy rule-base should contain proper physical intuition on the plant, so are needed lots of experiences of the skillful expert. When membership functions are considered, some parameters on the memberships function such as function shape, support, allocation density should be selected well. The rule of scaling factors is 'scaling'(amplifying or reducing) for both input and output signals of the FLC to fit in the membership function support and to operate the plant intentionally. To get a better performance of the FLC, it is necessary to adjust the parameters of the FLC. In general, the adaptation of the scaling factors is the most effective adjustment scheme, compared with that of the fuzzy rule-base or membership function parameters. This study proposes the adaptation scheme of the scaling factors. When the adaptation is performed on-line, the stability of the adaptive FLC should be guaranteed. The stable FLC system can be designed with stability analysis in the sense of Lyapunov stability. To adapt the scaling factors for the error signals, the concept of the conventional MRAC would be introduced into slightly modified form. A tracking accuracy of the control system would be enhanced by the modified shape and support of the membership function. The simulation is achieved on the pilot plant with the hydraulic steering control of a UCT(Unmanned Container Transporter) of which modeling dynamics have lots of severe uncertainties and modeling errors.

  • PDF

Design of a Fuzzy-Model-Based Controller for Nonlinear Systems (비선형 시스템을 위한 퍼지 모델 기반 제어기의 설계)

  • 주영훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.9 no.6
    • /
    • pp.605-614
    • /
    • 1999
  • This paper addresses analysis and design of a class of complex single-input single-output fuzzy control systems. In the proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Therefore, the globally stable fuzzy controller is designed without finding a common Lyapunov matrix. and shows improved perfonnance and tracking results by taking the advantages of fuzzy-model-based control theory and sliding mode control theory. Furthennore, stability analysis is conducted not Ibr the fuzzy model but for the real underlying nonlinear system. Two numerical examples are included to show the effcctiveness and feasibility of the proposed fuzzy control method.

  • PDF

A Study on Precise Position Control of Articulated Arm for Manufacturing Process Automation (제조공정자동화를 위한 다관절 아암의 정밀위치제어에 관한 연구)

  • Park, In-Man;Koo, Young-Mok;Jo, Sang-Young;Yang, Jun-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.181-190
    • /
    • 2015
  • This paper presents a new approach to control the position of robot arm in workspace a robot manipulator under unknown system parameters and bounded disturbance inputs. To control the motion of the manipulator, an inverse dynamics control scheme was applied. Since parameters of the robot arm such as mass and inertia are not perfectly known, the difference between the actual and estimated parameters was considered as a external disturbance force. To identify the known parameters, an improved robust control algorithm is directly derived from the Lyapunov's Second Method. A robust control algorithm is devised to counteract the bounded disturbance inputs such as contact forces and disturbing forces coming from the difference between the actual and the estimated system parameters. Numerical examples are shown using SCARA arm with four joints.

The Adaptive-Neuro Controller Design of Industrial Robot Using TMS320C3X Chip (TMS320C30칩을 사용한 산업용 로봇의 적응-신경제어기 설계)

  • 하석흥
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.162-169
    • /
    • 1999
  • In this paper, it is presented a new scheme of adaptive-neuro control system to implement real-time control of robot manipulator using digital Signal Processors. Digital signal processors DSPs. are micro-processors that are particularly developed for variables. Digital version of most advanced control algorithms can be defined as sums and products of measured variables, thus it can be programmed and executed through DSPs. In addition, DSPs are as fast in computation as most 32-bit micro-processors and yet at a fraction of their prices. These features make DSPs a biable computatinal tool in digital implementation of sophisticated controllers. Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of learning a model based error back-propagation scheme using Lyapunov stability analysis method. The proposed adaptive-neuro control scheme is illustrated to be a efficient control scheme for implementation of real-time control of robot system by the simulation and experiment.

  • PDF

Speed and Flux Estimation for an Induction Motor Using a Parameter Estimation Technique

  • Lee Gil-Su;Lee Dong-Hyun;Yoon Tae-Woong;Lee Kyo-Beum;Song Joong-Ho;Choy Ick
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • In this paper, an estimator scheme for the rotor speed and flux of an induction motor is proposed on the basis of a fourth-order electrical model. It is assumed that only the stator currents and voltages are measurable, and that the stator currents are bounded. There are a number of common terms in the motor dynamics, and this is utilized to find a simple error model involving some auxiliary variables. Using this error model, the state estimation problem is converted into a parameter estimation problem assuming that the rotor speed is constant. Some stability properties are given on the basis of Lyapunov analysis. In addition, the rotor resistance, which varies with the motor temperature, can also be estimated within the same framework. The effectiveness of the proposed scheme is demonstrated through computer simulations and experiments.

Robust H Disturbance Attenuation Control of Continuous-time Polynomial Fuzzy Systems (연속시간 다항식 퍼지 시스템을 위한 강인한 H 외란 감쇠 제어)

  • Jang, Yong Hoon;Kim, Han Sol;Joo, Young Hoon;Park, Jin Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.6
    • /
    • pp.429-434
    • /
    • 2016
  • This paper introduces a stabilization condition for polynomial fuzzy systems that guarantees $H_{\infty}$ performance under the imperfect premise matching. An $H_{\infty}$ control of polynomial fuzzy systems attenuates the effect of external disturbance. Under the imperfect premise matching, a polynomial fuzzy model and controller do not share the same membership functions. Therefore, a polynomial fuzzy controller has an enhanced design flexibility and inherent robustness to handle parameter uncertainties. In this paper, the stabilization conditions are derived from the polynomial Lyapunov function and numerically solved by the sum-of-squares (SOS) method. A simulation example and comparison of the performance are provided to verify the stability analysis results and demonstrate the effectiveness of the proposed stabilization conditions.

Observer Design for Linear Neutral Systems with Time-Varying Delays (시변 시간 지연을 포함하는 선형 뉴트럴 시스템의 관측기 설계)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.4
    • /
    • pp.483-487
    • /
    • 2007
  • This paper is concerned with the observer design problem for linear neutral systems with time-varying delays. The problem addressed is that of designing a full-order observer that guarantees the exponential stability of the error system. An effective algebraic matrix equation approach is developed to solve this problem. In particular, both observer analysis and design problems are investigated. Sufficient conditions for a linear neutral system to be stable are first established. Furthermore, an illustrative example is used to demonstrate the validity of the proposed design procedure.

A nonlinear controller based on saturation functions with variable parameters to stabilize an AUV

  • Campos, E.;Monroy, J.;Abundis, H.;Chemori, A.;Creuze, V.;Torres, J.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.211-224
    • /
    • 2019
  • This paper deals with a nonlinear controller based on saturation functions with variable parameters for set-point regulation and trajectory tracking control of an Autonomous Underwater Vehicle (AUV). In many cases, saturation functions with constant parameters are used to limit the input signals generated by a classical PD (Proportional-Derivative) controller to avoid damaging the actuators; however this abrupt bounded harms the performance of the controller. We, therefore, propose to replace the conventional saturation function, with constant parameters, by a saturation function with variable parameters to limit the signals of a PD controller, which is the base of the nonlinear PD with gravitational/buoyancy compensation and the nonlinear PD + controllers that we propose in this paper. Consequently, the mathematical model is obtained, considering the featuring operation of the underwater vehicle LIRMIA 2, to do the stability analysis of the closed-loop system with the proposed nonlinear controllers using the Lyapunov arguments. The experimental results show the performance of an AUV (LIRMIA 2) for the depth control problems in the case of set-point regulation and trajectory tracking control.