• Title/Summary/Keyword: Lyapunov exponent

Search Result 135, Processing Time 0.029 seconds

Application of the Instantaneous Lyapunov Exponent and Chaotic Systems, Part 2: Experiment and Comparison with the Force-State Mapping Method (순간 발산지수의 카오스계에의 응용, 파트 2: 실험 및 힘-위상(Force-State Mapping) 방법과의 비교)

  • Shin, Ki-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.150-160
    • /
    • 1999
  • 본 논문은 ‘파트 1’에 그 기초를 두었으며, 실제 실험 상황에의 응용예를 들었다. 보편적인 ‘이중-우물 위치 진동기(double-well potential vibrator)'를 외부 공기압 감쇠기를 장치할 수 있도록 수정하였다. 감쇠는 높음 또는 낮음 으로 조정할 수 있도록 하였다. 이 실험계는 주기운동부터 카오스 운동까지 다양한 동적 특성을 보여준다. 힘-위상(Force-Stare Mapping) 방법이 선형상태 및 카오스상태에 응용되었으며, 특히 감쇠의 높고 낮음의 파악에 그 중점을 두었다. 그리고 , 부분발산지수들(Short term averaged Lyapunov exponents)의 합이 또한 감쇠를 파악함과 동시에 높은 감쇠에서 낮은 감쇠로의 변화를 감시할 수 있음을 보였다. 이 두가지 방법들을 비교하였으며 논하였다.

  • PDF

Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

  • Gavilan-Moreno, Carlos J.;Espinosa-Paredes, Gilberto
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.434-447
    • /
    • 2016
  • The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

Effects of Total Sleep Deprivation on the First Positive Lyapunov Exponent of the Waking EEG

  • Kim, Dai-Jin;Jeong, Jae-Seung;Chae, Jeong-Ho;Kim, Soo-Yong;Go, Hyo-Jin;Paik, In-Ho
    • Science of Emotion and Sensibility
    • /
    • v.1 no.1
    • /
    • pp.69-78
    • /
    • 1998
  • Sleep deprivation may affect the brain functions such as cognition and consequently, dynamics of the BEG. We examined the effects of sleep deprivation on chaoticity of the EEG. Five volunteers were sleep-deprived over a period of 24 hours They were checked by EEG during two days. thc first day of baseline period and the second day of total sleep deprivation period. EEGs were recorded from 16 channels for nonlinear analysis. We employed a method of minimum embedding dimension to calculate the first positive Lyapunov exponent. Fer limited noisy data, this algorithm was strikingly faster and more accurate than previous ones. Our results show that the sleep deprived volunteers had lower values of the first positive Lyapunov exponent at ten channels (Fp1, F4. F8. T4, T5. C3, C4. P3. P4. O1) compared with the values of baseline periods. These results suggested that sleep deprivation leads to decrease of chaotic activity in brain and impairment of the information processing in the brain. We suggested that nonlinear analysis of the EEG before and after sleep deprivation may offer fruitful perspectives for understanding the role if sleep and the effects of sleep deprivation on the brain function.

  • PDF

Gait Study on the Normal and ACL Deficient Patients After Ligament Reconstruction Surgery Using Chaos Analysis Method (전방십자인대 재건수술 환자와 정상인의 보행 연구)

  • Ko Jae-Hun;Moon Byung-Young;Suh Jeung-Tak;Son Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.435-441
    • /
    • 2006
  • The anterior cruciate ligament(ACL) is an important stabilizer of knee joint. The ACL injury of knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is essential to identify knee condition of patients who display abnormal gait. The purpose of this study is to evaluate and classify knee condition of ACL deficient patients using a nonlinear dynamic method. The nonlinear method focuses on understanding how variations in the gait pattern change over time. The experiments were carried out for 17 subjects(l2 healthy subjects and five subjects with unilateral deficiency) walking on a motorized treadmill for 100 seconds. Three dimensional kinematics of the lower extremity were collected by using four cameras and KWON 3D motion analysis system. The largest Lyapunov exponent calculated from knee joint flexion-extension time series was used to quantify knee stability. The results revealed the difference between healthy subjects and patients. The deficient knee was significantly unstable compared with the contralateral knee. This study suggests an evaluation scheme of the severity of injury and the level of recovery. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

Construction fo chaos simulator for ultrasonic pattern recognition evaluation of weld zone in austenitic stainless steel 304 (오스테나이트계 스테인리스강 304 용접부의 초음파 형상 인식 평가를 위한 카오스 시뮬레이터의 구축)

  • Yi, Won;Yun, In-Sik;Chang, Young-Kwon
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.108-118
    • /
    • 1998
  • This study proposes th analysis and evaluation method of time series ultrasonic signal using the chaos feature extraction for ultrasonic pattern recognition. Features extracted from time series data using the chaos time series signal analyze quantitatively weld defects. For this purpose, analysis objective in this study is fractal dimension and Lyapunov exponent. Trajectory changes in the strange attractor indicated that even same type of defects carried substantial difference in chaosity resulting from distance shifts such as 0.5 and 1.0 skip distance. Such differences in chaosity enables the evaluation of unique features of defects in the weld zone. In quantitative chaos feature extraction, feature values of 4.511 and 0.091 in the case of side hole and 4.539 and 0.115 in the case of vertical hole were proposed on the basis of fractal dimension and Lyapunov exponent. Proposed chaos feature extraction in this study can enhances ultrasonic pattern recognition results from defect signals of weld zone such as side hole and vertical hole.

  • PDF

Application of the Chaos Theory to Gait Analysis (카오스 이론을 적용한 보행분석 연구)

  • Park, Ki-Bong;Ko, Jae-Hun;Moon, Byung-Young;Suh, Jeung-Tak;Son, Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.194-201
    • /
    • 2006
  • Gait analysis is essential to identify accurate cause and knee condition from patients who display abnormal walking. Traditional linear tools can, however, mask the true structure of motor variability, since biomechanical data from a few strides during the gait have limitation to understanding the system. Therefore, it is necessary to propose a more precise dynamic method. The chaos analysis, a nonlinear technique, focuses on understand how variations in the gait pattern change over time. Eight healthy eight subjects walked on a treadmill for 100 seconds at 60 Hz. Three dimensional walking kinematic data were obtained using two cameras and KWON3D motion analyzer. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. This study quantified the variability present in time series generated from gait parameter via chaos analysis. Knee flexion-extension patterns were found to be chaotic. The proposed Lyapunov exponent can be used in rehabilitation and diagnosis of recoverable patients.

Gait Study on the Normal and ACL Deficient Patients after Ligament Reconstruction Surgery Using Chaos Analysis Method (카오스 해석법을 이용한 전방십자인대 재건수술 환자와 정상인의 보행연구)

  • Ko Jae Hun;Son Kwon;Park Jung Hong;Suh Jeung Tak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.164-171
    • /
    • 2006
  • Anterior cruciate ligament(ACL) injury of the knee is common and a serious ACL injury leads to ligament reconstruction surgery. Gait analysis is used to identify the result of surgery. The purpose of this study is to numerically evaluate and classify knee condition of patients through the chaos analysis. Experiments were carried out for 13 subjects (8 healthy subjects, 5 ACL deficient patients) walking on a treadmill. Sagittal kinematic data of the right lower extremity were collected by using a 3D motion analysis system. The recorded gait patterns were digitized and then coordinated by KWON3D. The largest Lyapunov exponent from the measured knee angular displacement time series was calculated to quantify local stability. It was found that the Lyapunov exponent becomes larger as the knee condition becomes worse. This study suggested a method of the severity of injury and the level of recovery. The proposed method discerns difference between healthy subjects and patients.

Effects of Total Sleep Deprivation on the First Positive Lyapunov Exponent of the Waking EEG (수면박탈이 각성 뇌파의 양수 리아프노프 지수에 미치는 효과에 관한 연구)

  • 김대진;정재진;채정호;고효진;김춘길;김수용;백인호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1997.11a
    • /
    • pp.69-74
    • /
    • 1997
  • Sleep deprivation may affect the brain functions such as cognition and, consequentoy, dynamics of the EEG. we examiced the effects of sleep deprivation on chaoticity of EEG. Five volunteers were sleep-deprived over a period of 24 hours, They were checked by EEG during two days, the first day of baseline period, EEGs were reorded form 16 channels for nonlinear analysis. We dmployed a method of minimum cmbedding dimension to calculate the first positive Lyapunov exponent. For limited noisy data, this algorithm was strikingly faster and more accurate than previous ones. Our results show that the sleep deprived volunteers had lower values of the first positive Lyapunov exponent at ten channels (Fp$\_$1/, F$\_$4/, F$\_$8/, T$\_$4/, T$\_$5/, C$\_$3/, C$\_$4/, P$\_$3/, p$\_$4, O$\_$1/) compared with the values of baseline periods. These results suggested that sleep deprivation leads to decreawe of chaotic activity in brain and impairment of the information processing in the brain. We suggested that nonlinear analysis of the EEG before and after sleep deprivation may offer fruitful perspectives for understanding the role o f sleep deprivation on the brain function.

  • PDF

Biomechanical Analysis of Human Stability According to Running Speed: A Comparative Analysis of Lyapunov Exponent and Coefficient of Variation Methods (달리기 속도에 따른 인체 안정성의 생체역학적 분석: 리아프노프 지수와 변이계수 방법의 비교 분석)

  • Ho-Jong Gil
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.1
    • /
    • pp.34-44
    • /
    • 2023
  • Objective: The purpose of this study was to examine the effects of increasing running speed on human stability by comparing the Lyapunov Exponent (LyE) and Coefficient of Variation (CV) methods, with the goal of identifying key variables and uncovering new insights. Method: Fourteen adult males (age: 24.7 ± 6.4 yrs, height: 176.9 ± 4.6 cm, weight: 74.7 ± 10.9 kg) participated in this study. Results: In the CV method, significant differences were observed in ankle (flexion-inversion/eversion; p < .05) and hip joint (internal-external rotation; p < .05) movements, while the center of mass (COM) variable in the coronal axis movements showed a significant difference at the p < .001 level. In the LyE method, statistical differences were observed at the p < .05 level in knee (flexion-extension), hip joint (internal-external rotation) movements, and COM across all three directions (sagittal, coronal, and transverse axis). Conclusion: Our results revealed that the stability of the human body is affected at faster running speeds. The movement of the COM and ankle joint were identified as the most critical factors influencing stability. This suggests that LyE, a nonlinear time series analysis, should be actively introduced to better understand human stabilization strategies.