DOI QR코드

DOI QR Code

Biomechanical Analysis of Human Stability According to Running Speed: A Comparative Analysis of Lyapunov Exponent and Coefficient of Variation Methods

달리기 속도에 따른 인체 안정성의 생체역학적 분석: 리아프노프 지수와 변이계수 방법의 비교 분석

  • Ho-Jong Gil (Fila Advanced Science and Technology Center, FILA Holdings)
  • Received : 2023.03.09
  • Accepted : 2023.03.21
  • Published : 2023.03.31

Abstract

Objective: The purpose of this study was to examine the effects of increasing running speed on human stability by comparing the Lyapunov Exponent (LyE) and Coefficient of Variation (CV) methods, with the goal of identifying key variables and uncovering new insights. Method: Fourteen adult males (age: 24.7 ± 6.4 yrs, height: 176.9 ± 4.6 cm, weight: 74.7 ± 10.9 kg) participated in this study. Results: In the CV method, significant differences were observed in ankle (flexion-inversion/eversion; p < .05) and hip joint (internal-external rotation; p < .05) movements, while the center of mass (COM) variable in the coronal axis movements showed a significant difference at the p < .001 level. In the LyE method, statistical differences were observed at the p < .05 level in knee (flexion-extension), hip joint (internal-external rotation) movements, and COM across all three directions (sagittal, coronal, and transverse axis). Conclusion: Our results revealed that the stability of the human body is affected at faster running speeds. The movement of the COM and ankle joint were identified as the most critical factors influencing stability. This suggests that LyE, a nonlinear time series analysis, should be actively introduced to better understand human stabilization strategies.

Keywords

References

  1. Arampatzis, A., Broggemann, G. P. & Metzler, V. (1999). The effect of speed on leg stiffness and joint kinetics in human running. Journal of Biomechanics, 32(12), 1349-1353. https://doi.org/10.1016/S0021-9290(99)00133-5
  2. Bauby, C. E. & Kuo, A. D. (2000). Active control of lateral balance in human walking. Journal of Biomechanics, 33(11), 1433-1440. https://doi.org/10.1016/S0021-9290(00)00101-9
  3. Brughelli, M., Cronin, J. & Chaouachi, A. (2011). Effects of running velocity on running kinetics and kinematics. The Journal of Strength & Conditioning Research, 25(4), 933-939. https://doi.org/10.1519/JSC.0b013e3181c64308
  4. Bruijn, S. M., Meijer, O. G., Beek, P. J. & van Dien, J. H. (2013). Self-paced versus fixed speed treadmill walking. Gait & Posture, 37(2), 313-317. https://doi.org/10.1016/j.gaitpost.2012.07.020
  5. Buehler, C., Koller, W., De Comtes, F. & Kainz, H. (2021). Quantifying muscle forces and joint loading during hip exercises performed with and without an elastic resistance band. Frontiers in Sports and Active Living, 223.
  6. Cannon, A., Finn, K. & Yan, Z. (2018). Comparison of hip internal and external rotation between intercollegiate distance runners and non-running college students. International Journal of Sports Physical Therapy, 13(6), 956.
  7. Cappellini, G., Ivanenko, Y. P., Poppele, R. E. & Lacquaniti, F. (2006). Motor patterns in human walking and running. Journal of Neurophysiology, 95(6), 3426-3437. https://doi.org/10.1152/jn.00081.2006
  8. Carpentier, J., Benallegue, M. & Laumond, J. P. (2017). On the centre of mass motion in human walking. International Journal of Automation and Computing, 14, 542-551. https://doi.org/10.1007/s11633-017-1088-5
  9. Cheng, Y., Macera, C. A., Davis, D. R., Ainsworth, B. E., Troped, P. J. & Blair, S. N. (2000). Physical activity and self-reported, physician-diagnosed osteoarthritis: Is physical activity a risk factor? Journal of Clinical Epidemiology, 53, 315-322. https://doi.org/10.1016/S0895-4356(99)00168-7
  10. Choi, J. S., Kang, D. W. & Tack, G. R. (2008). Effects of walking speeds and cognitive task on gait variability. Korean Journal of Sport Biomechanics, 18(2), 49-58. https://doi.org/10.5103/KJSB.2008.18.2.049
  11. Dickey, J. P. & Gillespie, K. A. (2003). Determination of the effectiveness of materials in attenuating high frequency shock during gait using filterbank analysis. Clinical Biomechanics, 18(1), 50-59. https://doi.org/10.1016/S0268-0033(02)00171-7
  12. Dingwell, J. B. & Cusumano, J. P. (2000). Nonlinear time series analysis of normal and pathological human walking. Chaos: An Interdisciplinary Journal of Nonlinear Science, 10(4), 848-863. https://doi.org/10.1063/1.1324008
  13. Dingwell, J. B. & Marin, L. C. (2006). Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. Journal of Biomechanics, 39(3), 444-452. https://doi.org/10.1016/j.jbiomech.2004.12.014
  14. Dingwell, J. B., Cusumano, J. P., Sternad, D. & Cavanagh, P. R. (2000). Slower speeds in patients with diabetic neuropathy lead to improved local dynamic stability of continuous overground walking. Journal of Biomechanics, 33(3), 343-350.
  15. Donelan, J. M., Shipman, D. W., Kram, R. & Kuo, A. D. (2004). Mechanical and metabolic requirements for active lateral stabilization in human walking. Journal of Biomechanics, 37(6), 827-835. https://doi.org/10.1016/j.jbiomech.2003.06.002
  16. Dorn, T. W., Schache, A. G. & Pandy, M. G. (2012). Muscular strategy shift in human running: Dependence of running speed on hip and ankle muscle performance. Journal of Experimental Biology, 215(11), 1944-1956.
  17. England, S. A. & Granata, K. P. (2007). The influence of gait speed on local dynamic stability of walking. Gait & Posture, 25(2), 172-178. https://doi.org/10.1016/j.gaitpost.2006.03.003
  18. Foch, E., Brindle, R. A. & Milner, C. E. (2020). Weak associations between hip adduction angle and hip abductor muscle activity during running. Journal of Biomechanics, 110, 109965.
  19. Forman, D. E., Hausdorff, J. M., Ladin, Z., Goldberger, A. L., Rigney, D. R. & Wei, J. Y. (1994). Increased walking variability in elderly persons with congestive heart failure. Journal of the American Geriatrics Society, 42(10), 1056-1061. https://doi.org/10.1111/j.1532-5415.1994.tb06209.x
  20. Goldberger, A. L., Rigney, D. R., Mietus, J., Antman, E. M. & Greenwald, S. (1988). Nonlinear dynamics in sudden cardiac death syndrome: Heartrate oscillations and bifurcations. Experientia, 44, 983-987. https://doi.org/10.1007/BF01939894
  21. Guimaraes, R. M. & Isaacs, B. (1980). Characteristics of the gait in old people who fall. International Rehabilitation Medicine, 2(4), 177-180. https://doi.org/10.3109/09638288009163984
  22. Gundersen, L. A., Valle, D. R., Barr, A. E., Danoff, J. V., Stanhope, S. J. & Snyder-Mackler, L. (1989). Bilateral analysis of the knee and ankle during gait: an examination of the relationship between lateral dominance and symmetry. Physical Therapy, 69(8), 640-650.
  23. Gupta, A. (2018). Running analysis. International Journal of Physiotherapy and Research, 6(3), 2751-2756.
  24. Hamill, J., Palmer, C. & Van Emmerik, R. E. (2012). Coordinative variability and overuse injury. Sports Medicine, 42(10), 851-865.
  25. Hausdorff, J. M., Forman, D. E., Ladin, Z., Goldberger, A. L., Rigney, D. R. & Wei, J. Y. (1994). Increased walking variability in elderly persons with congestive heart failure. Journal of the American Geriatrics Society, 42(10), 1056-1061. https://doi.org/10.1111/j.1532-5415.1994.tb06209.x
  26. Heiderscheit, B. C., Hamill, J. & van Emmerik, R. E. (2002). Variability of stride characteristics and joint coordination among individuals with unilateral patellofemoral pain. Journal of Applied Biomechanics, 18(2), 110-121. https://doi.org/10.1123/jab.18.2.110
  27. Holt, K. G., Jeng, S. F., Ratcliffe, R. & Hamill, J. (1995). Energetic cost and stability during human walking at the preferred stride frequency. Journal of Motor Behavior, 27(2), 164-178. https://doi.org/10.1080/00222895.1995.9941708
  28. Ihlen, E. A., van Schooten, K. S., Bruijn, S. M., Pijnappels, M. & van Dien, J. H. (2017). Fractional stability of trunk acceleration dynamics of daily-life walking: Toward a unified concept of gait stability. Frontiers in Physiology, 8, 516.
  29. Jin, L. (2018). Kinematic and kinetic analysis of walking and running across speeds and transitions between locomotion states (Doctoral dissertation). University of Oregon.
  30. Kantz, H. & Schreiber, T. (2015). Nonlinear time-series analysis revisited. Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(9), 097610.
  31. Lee, C. R. & Farley, C. T. (1998). Determinants of the center of mass trajectory in human walking and running. The Journal of Experimental Biology, 201(21), 2935-2944.
  32. Lee, K. M. & Guo, J. (2010). Kinematic and dynamic analysis of an anatomically based knee joint. Journal of Biomechanics, 43(7), 1231-1236. https://doi.org/10.1016/j.jbiomech.2010.02.001
  33. Lee, S. & Kim, J. (2019). Ankle angle variability during running in athletes with chronic ankle instability and copers. Gait & Posture, 68, 329-334. https://doi.org/10.1016/j.gaitpost.2018.11.038
  34. Lee, S. & Kim, J. (2021). Running speed does not influence the asymmetry of kinematic variables of the lower limb joints in novice runners. Journal of Sports Sciences, 1-9. https://doi.org/10.1080/02640414.2017.1378421
  35. Liu, J., Lewton, K. L., Colletti, P. M. & Powers, C. M. (2021). Hip adduction during running: Influence of sex, hip abductor strength and activation, and pelvis and femur morphology. Medicine & Science in Sports & Exercise, 53(11), 2346-2353. https://doi.org/10.1249/MSS.0000000000002721
  36. Lyapunov, A. M. (1992). The general problem of the stability of motion. International Journal of Control, 55(3), 531-534. https://doi.org/10.1080/00207179208934253
  37. Maki, B. E. (1997). Gait changes in older adults: predictors of falls or indicators of fear? Journal of the American Geriatrics Society, 45(3), 313-320. https://doi.org/10.1111/j.1532-5415.1997.tb00946.x
  38. McAndrew, P. M., Dingwell, J. B. & Wilken, J. M. (2010). Walking variability during continuous pseudo-random oscillations of the support surface and visual field. Journal of Biomechanics, 43(8), 1470-1475. https://doi.org/10.1016/j.jbiomech.2010.02.003
  39. Mehdizadeh, S., Arshi, A. R. & Davids, K. (2014). Effect of speed on local dynamic stability of locomotion under different task constraints in running. European Journal of Sport Science, 14(8), 791-798. https://doi.org/10.1080/17461391.2014.905986
  40. Mercer, J. A., Vance, J., Hreljac, A. & Hamill, J. (2002). Relationship between shock attenuation and stride length during running at different velocities. European Journal of Applied Physiology, 87, 403-408.
  41. Munro, C. F., Miller, D. I. & Fuglevand, A. J. (1987). Ground reaction forces in running: A reexamination. Journal of Biomechanics, 20, 147-155. https://doi.org/10.1016/0021-9290(87)90306-X
  42. Murley, G. S., Landorf, K. B., Menz, H. B. & Bird, A. R. (2009). Effect of foot posture, foot orthoses and footwear on lower limb muscle activity during walking and running: a systematic review. Gait & Posture, 29(2), 172-187. https://doi.org/10.1016/j.gaitpost.2008.08.015
  43. Noehren, B., Schmitz, A., Hempel, R., Westlake, C. & Black, W. (2014). Assessment of strength, flexibility, and running mechanics in men with iliotibial band syndrome. Journal of Orthopaedic & Sports Physical Therapy, 44(3), 217-222. https://doi.org/10.2519/jospt.2014.4991
  44. Orendurff, M. S., Kobayashi, T., Tulchin-Francis, K., Tullock, A. M. H., Villarosa, C., Chan, C., Kraus, E. & Strike, S. (2018). A little bit faster: Lower extremity joint kinematics and kinetics as recreational runners achieve faster speeds. Journal of Biomechanics, 71, 167-175. https://doi.org/10.1016/j.jbiomech.2018.02.010
  45. Rubin, C., Turner, A. S., Mller, R., Mittra, E., McLeod, K., Lin, W. & Qin, Y. X. (2002). Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. Journal of Bone and Mineral Research, 17(2), 349-357. https://doi.org/10.1359/jbmr.2002.17.2.349
  46. Ryu, J. S. (2006). Comparisons of frequency domain characteristics of ground reaction forces during walking of young and elderly males. The Korean Journal of Physical Education, 4(5), 457-464.
  47. Ryu, J. S. (2007). Nonlinear time series analysis of dynamic stability during human walking at the preferred speed. The Korean Journal of Physical Education, 46(2), 431-439.
  48. Ryu, J. S. (2009). The effect of walking with high-heel shoes on local dynamic stability. The Korean Journal of Physical Education, 48(1), 431-438.
  49. Ryu, J. S. (2010). Difference of the shoe, dress shoe, and barefoot's impact factors during walking. The Korean Journal of Physical Education, 49(1), 445-455.
  50. Ryu, J. S. (2014). Variability of GRF components between increased running times during prolonged run. Korean Journal of Sport Biomechanics, 24(4), 359-365. https://doi.org/10.5103/KJSB.2014.24.4.359
  51. Santos-Lozano, A., Collado, P. S., Foster, C., Lucia, A. & Garatachea, N. (2020). Human running performance from real-world big data. Nature Communications, 11(1), 1-10. https://doi.org/10.1038/s41467-019-13993-7
  52. Sasaki, K. & Neptune, R. R. (2006). Differences in muscle function during walking and running at the same speed. Journal of Biomechanics, 39(11), 2005-2013. https://doi.org/10.1016/j.jbiomech.2005.06.019
  53. Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A., Rosemond, D. & Pandy, M. G. (2011). Effect of running speed on lower limb joint kinetics. Medicine & Science in Sports & Exercise, 43(7), 1260-1271. https://doi.org/10.1249/MSS.0b013e3182084929
  54. Schache, A. G., Dorn, T. W., Blanch, P. D., Brown, N. A. & Pandy, M. G. (2012). Mechanics of the human hamstring muscles during sprinting. Medicine & Science in Sports & Exercise, 44(4), 647-658. https://doi.org/10.1249/MSS.0b013e318236a3d2
  55. Seeley, M. K., Umberger, B. R. & Shapiro, R. (2008). A test of the functional asymmetry hypothesis in walking. Gait & Posture, 28(1), 24-28. https://doi.org/10.1016/j.gaitpost.2007.09.006
  56. Stergiou, N., Jensen, J. L., Bates, B. T., Scholten, S. D. & Tzetzis, G. (2001). A dynamical systems investigation of lower extremity coordination during running over obstacles. Clinical Biomechanics, 16(3), 213-221. https://doi.org/10.1016/S0268-0033(00)00090-5
  57. Taunton, J. E., Ryan, M. B., Clement, D. B., McKenzie, D. C., Lloyd-Smith, D. R. & Zumbo, B. D. (2002). A retrospective case-control analysis of 2002 running injuries. British Journal of Sports Medicine, 36(2), 95-101.
  58. Tesio, L. & Rota, V. (2019). The motion of body center of mass during walking: A review oriented to clinical applications. Frontiers in Neurology, 10, 999.
  59. Tojima, M., Osada, A. & Torii, S. (2019). Changes in hip and spine movement with increasing running speed. Journal of Physical Therapy Science, 31(8), 661-665. https://doi.org/10.1589/jpts.31.661
  60. Tominaga, R., Ishii, Y., Ueda, T. & Kurokawa, T. (2016). The effects of running speed on ground reaction forces and lower limb kinematics during single-leg stop movement. The Journal of Strength & Conditioning Research, 30(5), 1224-1230. https://doi.org/10.1519/JSC.0000000000000286
  61. Tsuji, K., Ishida, H., Oba, K., Ueki, T. & Fujihashi, Y. (2015). Activity of lower limb muscles during treadmill running at different velocities. Journal of Physical Therapy Science, 27(2), 353-356. https://doi.org/10.1589/jpts.27.353
  62. Van Oeveren, B. T., de Ruiter, C. J., Beek, P. J. & van Dieen, J. H. (2021). The biomechanics of running and running styles: A Synthesis. Sports Biomechanics, 1-39.
  63. Vernillo, G., Martinez, A., Baggaley, M., Khassetarash, A., Giandolini, M., Horvais, N., Edwards, W. B. & Millet, G. Y. (2020). Biomechanics of graded running: Part I-stride parameters, external forces, muscle activations. Scandinavian Journal of Medicine & Science in Sports, 30(9), 1632-1641. https://doi.org/10.1111/sms.13708
  64. Wada, O., Tateuchi, H. & Ichihashi, N. (2014). The correlation between movement of the center of mass and the kinematics of the spine, pelvis, and hip joints during body rotation. Gait & Posture, 39(1), 60-64. https://doi.org/10.1016/j.gaitpost.2013.05.030
  65. Winter, D. A. (1983). Biomechanical motor patterns in normal walking. Journal of Motor Behavior, 15(4), 302-330. https://doi.org/10.1080/00222895.1983.10735302
  66. Winter, D. A. (1989). Biomechanics of normal and pathological gait: Implications for understanding human locomotor control. Journal of Motor Behavior, 21(4), 337-355. https://doi.org/10.1080/00222895.1989.10735488
  67. Wurdeman, S. R., Huben, N. B. & Stergiou, N. (2012). Variability of gait is dependent on direction of progression: Implications for active control. Journal of Biomechanics, 45(4), 653-659. https://doi.org/10.1016/j.jbiomech.2011.12.014
  68. Yack, H. J. & Berger, R. C. (1993). Dynamic stability in the elderly: Identifying a possible measure. Journal of Gerontology, 48(5), M225-M230. https://doi.org/10.1093/geronj/48.5.M225
  69. Zhang, J., Zhang, J., Huang, K., Li, Y. & Gong, Y. (2016). Human running detection: Benchmark and baseline. Pattern Recognition, 60, 184-198.