• 제목/요약/키워드: Lyapunov controller

검색결과 620건 처리시간 0.024초

Motion Control of Omnidirectional Mobile Platform for Path Following Using Backstepping Technique

  • Dinh, Viet-Tuan;Thinh, Doan-Phuc;Hoang, Giang;Kim, Hak-Kyeong;Oh, Sea-June;Kim, Sang-Bong
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.1-8
    • /
    • 2011
  • This paper proposes a controller design for an omnidirectional mobile platform (OMP) with three wheels using backstepping control. A kinematic model and dynamic model of the system are presented. Based on the dynamic modeling, a backstepping controller is designed to stabilize the OMP when following a desired path. The controller is designed based on a backstepping control theory. It includes two steps: first, a virtual state and a stability function are introduced. Second, Lyapunov functions for the system are chosen and an equation for the virtual control that makes the system stabile is obtained. The system stability is guaranteed by the Lyapunov stability theory. The simulation and experimental results are presented to demonstrate the effectiveness of the proposed controller.

퍼지규칙에 의한 직.간접 혼합 신경망 적응제어시스템의 설계 (Design of the Combined Direct and Indirect Adaptive Neural Controller Using Fuzzy Rule)

  • 이순영;장순용
    • 한국정보통신학회논문지
    • /
    • 제4권3호
    • /
    • pp.603-610
    • /
    • 2000
  • 본 논문에서는 직접 적응제어기와 간접 적응제어기를 Lyapunov 안정도 이론에 근거하여 결합하였다. 제어기는 RBF 신경망을 이용하여 구성하였으며 하중파라미터들은 적응칙에 의하여 조정되도록 하였다. 또한 시스템의 성능에 영향을 미치는 결합 가중치는 퍼지 If-THEN 규칙을 이용하여 결정되도록 하였다. 이렇게 함으로써 직접 적응제어기와 간접 적응제어기의 장점을 지니는 직 간접 혼합 신경망 적응제어기를 구성할 수 있었다. 제안한 알고리즘의 효용성을 보이기 위하여 일축 강페 로봇 매니퓰레이터를 대상으로 시뮬레이션한 결과 만족할 만한 성능을 보였다.

  • PDF

완만한 곡선경로 추적용 이륜 용접이동로봇의 제어 (Control of Two-Wheeled Welding Mobile Robot For Tracking a Smooth Curved Welding Path)

  • ;;김학경;김상봉
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.85-86
    • /
    • 2006
  • In this paper, a nonlinear controller based on adaptive sliding-mode method which has a sliding surface vector including new boundary function is proposed and applied to a two-wheeled voiding mobile robot (WMR). This controller makes the welding point of WMR achieve tracking a reference point which is moving on a smooth curved welding path with a desired constant velocity. The mobile robot is considered in view of a kinematic model and a dynamic model in Cartesian coordinates. The proposed controller can overcome uncertainties and external disturbances by adaptive sliding-mode technique. To design the controller, the tracking error vector is defined, and then the new sliding is proposed to guarantee that the error vector converges to zero asymptotically. The stability of the dynamic system will be shown through the Lyapunov method. The simulations is shown to prove the effectiveness of the proposed controller.

  • PDF

A fuzzy grey predictor for civil frame building via Lyapunov criterion

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-Yuan;Chen, Timothy
    • Computers and Concrete
    • /
    • 제30권5호
    • /
    • pp.357-367
    • /
    • 2022
  • In this paper, we propose an efficient control method that can be transformed into a general building control problem for building structure control using these reliability criteria. To facilitate the calculation of controller H∞, an efficient solution method based on Linear Matrix Inequality (LMI) is introduced, namely H∞-based LMI control. In addition, a self-tuning predictive grey fuzzy controller is proposed to solve the problem caused by wrong parameter selection to eliminates the effect of dynamic coupling between degrees of freedom (DOF) in Self-Tuning Fuzzy Controllers. We prove stability using Lyapunov's stability theorem. To check the applicability of the proposed method, the proposed controller is applied and the control characteristics are determined. The simulation assumes system uncertainty in the controller design and emphasizes the use of acceleration feedback as a practical consideration. Simulation results show that the performance of the proposed controller is impressive, stable, and consistent with the performance of LMI-based methods. Therefore, an effective control method is suitable for seismic reinforcement of civil buildings.

지연귀환을 통한 불확실 시간지연 시스템의 비약성 성능보장 제어기 설계 (Non-fragile Guaranteed Cost Controller Design for Uncertain Time-delay Systems via Delayed Feedback)

  • 권오민;박주현
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.458-465
    • /
    • 2008
  • In this paper, we propose a non-fragile guaranteed cost controller design method for uncertain linear systems with constant delyas in state. The norm bounded and time-varying uncertainties are subjected to system and controller design matrices. A quadratic cost function is considered as the performance measure for the system. Based on the Lyapunov method, an LMI(Linear Matrix Inequality) optimization problem is established to design the controller which uses information of delayed state and minimizes the upper bound of the quadratic cost function for all admissible system uncertainties and controller gain variations. Numerical examples show the effectiveness of the proposed method.

신경회로망 및 Backstepping 기법을 이용한 비선형 적응 비행제어 (Nonlinear Adaptive Flight Control Using Neural Networks and Backstepping)

  • 이태영;김유단
    • 제어로봇시스템학회논문지
    • /
    • 제6권12호
    • /
    • pp.1070-1078
    • /
    • 2000
  • A nonlinear adaptive flight control system is proposed using a backstepping controller with neural network controller. The backstepping controller is used to stabilize all state variables simultaneously without the two-timescale assumption that separates the fast dynamics, involving the angular rates of the aircraft, from the slow dynamics which includes angle of attack, sideslip angle, and bank angle. It is assumed that the aerodynamic coefficients include uncertainty, and an adaptive controller based on neural networks is used to compensate for the effect of the aerodynamic modeling error. It is shown by the Lyapunov stability theorem that the tracking errors and the weights of neural networks exponentially converge to a compact set. Finally, nonlinear six-degree-of-freedom simulation results for an F-16 aircraft model are presented to demonstrate the effectiveness of the proposed control law.

  • PDF

Lyapunov Based Adaptive-Robust Control of the Non-Minimum phase DC-DC Converters Using Input-Output Linearization

  • Salimi, Mahdi;Zakipour, Adel
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1577-1583
    • /
    • 2015
  • In this research, a combined adaptive-robust current controller is developed for non-minimum-phase DC-DC converters in a wide range of operations. In the proposed nonlinear controller, load resistance, input voltage and zero interval of the inductor current are estimated using developed adaptation rules and knowing the operating mode of the converter for the closed-loop control is not required; hence, a single controller can be employed for a wide load and line changes in discontinuous and continuous conduction operations. Using the TMS320F2810 digital signal processor, the experimental response of the proposed controller is presented in different operating points of the buck/boost converter. During transition between different modes of the converter, the developed controller has a better dynamic response compared with previously reported adaptive nonlinear approach. Moreover, output voltage steady-state error is zero in different conditions.

코일 저항의 불확실성을 가지는 자기 부상 시스템의 강인 제어 (Robust Control of Electromagnetic Levitation System with Uncertain Coil Resistor)

  • 정민길;최호림
    • 전기학회논문지
    • /
    • 제64권7호
    • /
    • pp.1096-1103
    • /
    • 2015
  • Electromagnetic levitation system(EMLS) is one of the well known nonlinear systems due to its high degree of nonlinearities. Moreover, when there are uncertain parameters in EMLS, it is not easy to have an accurate control of EMLS. In this paper, we first apply a standard input-output feedback linearzing controller to EMLS and investigate the possible control error caused by uncertain coil resistor. Then, as a remedy, we design and apply a robust controller using Lyapunov redesign technique to deal with this uncertain coil resistor in the system. The validity of our robust controller is verified via system analysis and experimental results.

A DESIGN METHOD OF LYAPUNOV-STABLE MMG FUZZY CONTROLLER

  • Hara, Fumio;Yamamoto, Kazuomi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.873-876
    • /
    • 1993
  • A fuzzy controller designed by mini-max-gravity(MMG) method is essentially nonlinear with respect to the controller's input and output relationship, and stability analysis is thus needed to construct a stable control system. This paper deals with a design method of a position-type MMG fuzzy controller stable in a sense of Lyapunov when considered is a single-input-single-output linear, stable plant. We first introduce a method to construct a Laypunov function by using an eigen-value of A matrix of the linear, stable plant dynamics and then we derive an asymtotic stability condition in terms of scale factors for fuzzy state variables and controller gain. The stability condition is found reasonably practical through comparing the theoretical stability region with that obtained from simulations.

  • PDF

반복 학습을 통한 무인 선박의 제어기 설계에 관한 연구 (A Study on the Controller Design of Unmanned Surface Vessel through Repetitive Learning Method)

  • 김민철
    • 한국군사과학기술학회지
    • /
    • 제21권6호
    • /
    • pp.850-856
    • /
    • 2018
  • In this paper, a controller based on repetitive learning control is designed to control an unmanned surface vessel with nonlinear characteristics and unknown parameters. First, we define the equations of motion and error system of the unmanned vessel, and then design an repetitive learning controller composed of system error and estimated unknown parameters based on repetitive learning control and adaptive control. The stability of the unmanned vessel model controlled by the designed controller is verified through the analysis of the Lyapunov stability. Simulation shows that the error converges asymptotically to zero with semi-global result, confirming that the unmanned vessel is moving toward a given ideal path, and verifies that the controller is also feasible.