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Non-fragile Guaranteed Cost Controller Design for Uncertain Time—delay Systems
via Delayed Feedback

A N s
(Oh-Min Kwon - Ju-Hyun Park)

Abstract -In this paper, we propose a non-fragile guaranteed cost controller design method for uncertain linear systems
with constant delyas in state. The norm bounded and time-varying uncertainties are subjected to system and controller
design matrices. A quadratic cost function is considered as the performance measure for the system. Based on the
Lyapunov method, an LMI(Linear Matrix Inequality) optimization problem is established to design the controller which
uses information of delayed state and minimizes the upper bound of the quadratic cost function for all admissible system
uncertainties and controller gain variations. Numerical examples show the effectiveness of the proposed method.
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1. Introduction

Time delay occurs in many dynamic system such as
nuclear reactors, chemical engineering systems, ship
stabilization, biological systems, neural network, epidemic

systems, population dynamics models and so on [1-25]. In

practice, the systems almost have some uncertainties
because it is almost impossible to obtain an exact
mathematical model due to the difficulty of measuring
various parameters, environmental noises, poor plant
knowledge and system complexities. Therefore, during the
past two decades, considerable attention has been paid
towards robust controller design methods for uncertain
linear systems with time-delays. These methods can be
classified into two categories: delay independent
approaches [1-4] and delay-dependent approaches [5-7].
In general, delay-dependent methods provide less
conservative results when the size of the delays is small.
efforts to system

performance in designing a controller for uncertain time

There are various consider
delay systems. One kinds of them is guaranteed cost
control introduced first by Cheng and Peng [8]. This
method not only guarantees closed-loop stability but also
maintains an adequate level of performance represented
by the quadratic cost function. The advantage of this

method provides an upper bound of given cost function
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and the system degradation is guaranteed to be less than
this bound. While many researchers have proposed the
delay-independent guaranteed cost design
methods for uncertain linear systems with delays [9-12]

controller

only a few delay-dependent results for the guaranteed
cost controller design method can be found [13-15]. In
the work [13-15], the design procedures for memoryless
state feedback guaranteed cost control laws have been
proposed. Although this memoryless state feedback
controller is simple and easy to implement, its
performance can be more conservative than that of a
delayed feedback controller which use the information of
the size of the time-delay. Fortunately, in many real
systems, information on the size of the time-delay is
often available. Thus, if we design a delayed feedback
controller, we can provide a better performance. This
property has been shown in the literature [16-18].

On the other hand, when we implement a controller in
real world, it is also desirable to consider the controller
gain variations because it is impossible to design the
given controller exactly. It is because the controller may
be subject to the inaccuracy such as the error of
resistance, A/D and D/A conversion, finite word length,
and round-off errors in numerical computation. Therefore,
this controller fragility issue have been attracted by some
researchers [19-20]. Keel [19] explains the controller
fragility in the continuous-time domain by weighted H,
and p synthesis technique, even though these controllers
are robust only with respect to system uncertainty. Yee
[20] studies a discrete-time non-fragile guaranteed cost
controller design that tolerates some forms of controller



gain uncertainties that are closely related to the actuator
fault. Haddad [21] developed multivariable robust control
design frameworks such as J, control and y synthesis
for the robust stability and performance control problem.

Recently, in order to reduce the conservatism in
stability analysis and controller synthesis, a new integral
inequality by adopting the free weighting matrix is
introduced by [22]. This may improve the performance of
delayed-feedback  guaranteed cost control in  the
closed-loop system. Motivated by the work [22}], we
present a new integral inequality for our stability
analysis.

In this propose a delayed feedback
non—fragile guaranteed cost controller design method for
dynamic systems with time delay and uncertainties. We
design a controller with feedback provisions for the
current state and the past history of the state. Based on
the Lyapunov function method, an optimization problem is
formulated to design the controller, which stabilizes the
uncertain linear systems with time-delay and minimizes
the upper bound value of cost function. This stabilization
problem is formulated in terms of LMIs which can be
solved efficiently using various

paper, we

convex optimization
algorithms. Finally, we include numerical examples to
show that our result is less conservative than that of the
existing method. Throughout this paper, * represents
the elements below the main diagonal of a symmetric
matrix. The notation X>0( X>() means that Xis a real
symmetric positive definite matrix (positive semi-definite).
I denotes the identy matrix whose dimensions can be
determined from the context. R is the n-dimensional
Euclidean space, R ™" denotes the set of gyxy real

matrix. djgg{--+} denotes the block diagonal matrix.
Coill=h 0),R"
continuous vector functions which maps the interval

[—40) into R~

denotes the Banach space of

2. Problem Statements

Consider the following uncertain linear system with
delay in state:

#(=(A+20A)x()+ (A, + AADx(t— W)+ (B+AB)u(d
x(s)=d(s), se[—h,0],

(1)
where x(f)=R* is the state, () =R™ is the control input,
A A and B are known real matrices of appropriate
AA, A, and  AB  are
time-varying uncertainties, 4 is a known constant delay,
and o(9)eC,, is a given vector valued initial function.
The parameter uncertainties AA, AA; and AB have the

following form:

dimensions, norm-bounded
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AM=DF(DE, M,_pF(DE, AB=DFy()E, 2)
where D; E{(i=1,2,3) are known real constant matrices

ki

of appropriate dimensions, and F()€R are known

matrices, which satisfy

FIOF(H<I,(i=1,2,3). (3)
In this paper, it is assumed that the pair (A+A,, B) is
controllable, and the measurement of the state x(#) and
the size of time-delay /% are always available. In order to

evaluate the system performance, we define the following
integral quadratic cost function

]=fom[xT(l‘)Wlx(t)-FuT(”qu(t)]dt’ @)

where W;>0 and W,>0 are given state and control

weighting matrices.
The objective of this paper is to design a controller
which minimizes the cost function (4). Thus we consider
the controller of the form

u(f) = Kz(¥) (5)
where KeR™” is the nominal controller gain to be
designed and

z2(H=x(DH+ f:, hA x(8)ds, (6)

which is the neutral model transformation [23].

However, in real controller implemenatation, the controller
gain matrix has some amount of error in the
neighborhood of K. Theferere, the actual controller

implemented is

u(H = (K+2RK)z(P, %
where AK represents the multiplicative gain perturbations
of the form

AK=D,F,(DE,K, 8)
with Dy and E,; being known real matrices of

appropriate dimensions, and F; being unknown matrices
satisfying FIF,<I.
Differentiating z(#) with respect to ¢ leads to

z(t) = x(D+Ax()—Ax(t—h)
= (Ap+2A)x(H+AAx(t— W)+ (B+ABu(d

9)
where A;=A+A,.
By applying controller (7) to Eq. (9), we have

2(8) = (Ay+AAx(D)+AA (- R
+(B+AB)(K+AK)z(D
= (A, +AA)(D)+ (B+AB(K+AK)2(D)+AAx(t— h)

—(Ay+AAy, .fihAlx(s)ds.
(10)
The following definition, facts and lemmas will be used

to derive the main results.
Definition 1. For system (1) and cost function (4), if

there exist a control law #*(# and a positive scalar J,
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such that for all admissible uncertainties, the closed-loop
system is asymptotically stable, and the closed-loop value

of the cost function satisfies J<J*, then #*(§) is said to

be a guaranteed cost controller for system (1), and J* is
said to be a guaranteed cost.
Fact 1. (Schur Complement) Given constant symmetric

matrices X,,Z,,Z; where =,=%] and 0<Z,=37, then
=+ 3215,715.40 if and only if

[ 1 23]<0 or [_22 Zs]<0
ZST _21

Fact 2. For given matrices D, E and F with FTF<]

and a scalar ¢>0, the following inequality
DFE+ETFTDT<eDDT+¢ " 'E'E

is always satisfied.

Lemma 1. [24] For a given positive scalar %> 0 and a,

where 0<a<1, if there exists a positive definite matrix
M, such that the LMI

—aM RAT

<0
WMA, —M

holds, then z(#) is a stable operator for any k<[0, 7].
Lemma 2. For any matrix @>0, F and scalar %220, the
following inequality holds: '

- f:_ Z T(9)Qx(s)ds<

tz(t) T[ 0 0 T] tz(t)
ft_hx(s)ds * F+F ft_hx(s)ds
+h tz(t) T[O]Q—l[o FT] Z(l‘) T
ft_ hx( s)ds| F - hx( s)ds|
Proof. Utilizing Fact 2, we have
- f:_ 2T DQr()dy<
2 x'wlo F1] 2D |
=k ﬂx(s)ds
¢ T
+ z(H 0 Q[0 FT] tz( )
ft*h fti hx(s)ds [F] ft_ hx(s)ds
=9 tz(t) TO[O FT] tz(t)
ft_ hx(s)ds [ I] ft_ hx(s)a’s
T
+h ftz(t) [%]Q—l[o FT] z(t)
. hx( s)ds x( s)ds

3. Design of Nonfragile Guaranteed Cost Controller

In this section, by using the Lyapunov stability theory,
we propose the method of designing a delay-dependent
non-fragile guaranteed cost controller for system (1).

For simplicity, we define
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T = AX+XAI+BY+ Y'BT+(¢,+¢)D, DT +¢,D,D]
+ £4D5DY + epsilingBD, D BT,
. = [XE] Y'ET YT Y'ET Y'E],
, = diag{—e,I,—e l+e,E;D,DIET, —
— 51, —861 e, 1}
0 0 0
T T, T T,
MNT = [~ o(907()ds, NaNT= [ [ 0G0 "(wduds.

(11

[ 1]

VV;l+37D4D41T,

Now, we give our main result.
Theorem 1. Consider system (1) and cost function (4).
For given constant 4, if the following optimization
problem

min o+ Trace(M,)+ Trace(M,) subjectto

T —AAR 0 0 AX X XE] E
*x L+LT RAT L —hmRAT —RAT —RATE] ¢
* Kk -l 0 0 0 0 0
*x  * * —R 0 0 0 0 o
*x * % —R 0 0 0
*x * *x Kk —W' 0 0
*x % *x *x % *x  —ed 0
*x * *x *x % * *x
(12)
hAM
[ * ]<° (13)
—az(O)]
[ <0, (14)
M, hNY
x - ]<0 (15)
- M, N'E
x —e,1|<0 (16)

has the solution X>0, R>0, M>0, M;>0, My>0, and
Y and L with appropriate dimensions and
.,7), then system (1)

matrix
positive scalar values o, e{i=1,
is stabilized by nonfragile guaranteed cost controller (7)
with gain K=YX ~!
the cost function (4)is J'=a+ Trace(M,) + Trace(M,).

Proof. This proof is composed of two parts. The first

, and then the guaranteed cost of

part is the method for obtaining controller gain matrix
and the second one is to derive the condition, which
minimizes the upper bound value of cost function (4).
First, consider the Lyapunov functional candidate as

= zT(t)Pz(t)-f-f:thxT(u)Qx(u)duds a7
+ [ xTO Te(oas,

Wz, D

where the matrices P, @, and T are positive definite
matrices.

Taking the derivative of V(z, $ and defining
Vi(z, & = 22T(H P(Ay+AA+ (B+AB)(K+ AK))z(P
—2:T(D (A, +2A) [ Ap(s)ds
+ 22T PAA x(t— h) + hx T(D) Qx(D)
— [ 279 Qe(9ds-+x7() Tx()



—xT(t—h) Tt by + x7(H) Wyx( D)
+27() (K+ AK) "TWy( K+ AK)2( D)

(18)
leads to
Viz, ) = Vilz, ) —x7() Wl (19)
—2T(H (K+AK) Wok + 2 K2(H).
By using Fact 2, we obtain
227 PD,F (D E,2(H< (20)
£.27() PD,DTP() + ¢ '2T(D ETE 2(D),
22T(8) PD,F () Exx(t— B) < 21)

£92 () PD,DIPz(H) + e, % T(t— h) ETEox(t— h),
227(8) PD;F,(D Ey(K+AK)2(H<
£427(#) PD,DIPz(%) (22)
+e; ZT(N(K+AK) TETE,(K+ AR)2(D,
—2:"(OPDF\(DE, [ Ap(s)ds<
42 () PD,DTP2(D (23)
-1 T TT
+e, (j:ihx(s)ds) AlElElAl(_f:_hx(s)ds).
Let us define 7,=#Q+ W+ T, and then we have
SO T = 27D Ta()-2"(D T, [ _ A(9ds

; TAT
+ (ft_hx(s)ds) T1A1( _f_hx(s)ds) .

Substituting Eqgs. (20)-(24) into Eq. (18) gives that

V1(Z, t) =

2" ([ PA,+ ATP+ PB(K+ AK) +(K+ AK) TBTP2(9)

+e,27() PD.D"2(d) +

T

+e,! ( j:ihx(s)ds) AlTElTElAl( J:_hx(s)ds)

—2:7()PA, [ Ax(9ds

+xT(t—=m) (= T+ e, 'EIE)x(t— h)

+£,27() PD,DIP2( 1) + 27() T,2(D)

-227(H Ty J:_hAlx(s)ds

t T
+ ( ft_ hx(s)ds) AITTIAI( J:ihx(s)ds)
+e,27()) PD\DIP(H) + e 2 T(H ETE 2(D
+ ¢,PD,DIPz(1)
+eg 2" (D (K+ AR TETE(K+ AK) (D)
+27() (K+ AR TWy(K+ A K)z(D)

t z(b)
ft_ hx(s)ds
) z(p)
f:— hx(s)ds

(24)

) z(8)
ft_ hx(s)ds

T[O]Q—l[o FT] tz(t)
F l_hx(s)ds

T T[ 3( an FT]

T
+hr

(25)
where Lemma 2 is utilized in obtaining the upper bound

of —f:_th(s)Qx(s)ds.

Here, let us choose the parameter 7T as
T=c¢5'E]E, (26)

and define

KA EE BB SHA ATX o Aladol vlotd MSEE Fofy| M
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£, = PA;+ AP+ PB(K+AK)+ (K+AK)'BTP
+ (e,+ £ )PD,DTP+ e,PD,DI*+ e[ 'ETE,
+e; WK+ AK)TETE(K+ AK)
+(K+AK) "Wy (K+ AK).

27
Then, we have the following inequality

z( D TG z(#)
t t
x(s)dx] f x(s)dJ (28)
t—=h t—h
IS 4T —PAA-TAL, 0] ot
G_.[ 3 AOG; i 1]+h[ 9o 0T o
and Gp=ATT\A, +e; \ATETE,A, + F+F".

If G<¢0, then there exists a positive scalar A, which
satisfies

Vi(z, D=

where

Wz, H<—N|z(|I2 (30)

Also, if the inequality (13) holds, then we can prove that
a positive scalar § which is less than one exists such
that

—8M  hA[.

* - 1114 <0
according to matrix theory. From Lemma 1, if LMI (13)
holds, the operator z(§ is stable. By Theorem 9.81 in
[25], we can conclude that if G<¢( and LMI (13) hold,
then system (10) is asymptotically stable. From Eq. (29),
G<0 can be represented as

2} _PAOAl ]+h 0 Q—l[o FT‘J
% e, 'ATETR A+ F+F” [IJ (32)

ol _qu] 7 _qu] .

By Fact 1, the inequality (32) is equivalent to

(31

T, —PAA, 0 17 I E] K'E] KT
% (EZIAITElTETIAI) F —hAT —AT —ATET 0 0
+F+F
* * -r7lQ 0 0 0 0 0
* * *x -—rlQ 0 0 0 0
* * * * W' 0 0 0
* * * * *  —e] 0 0
* * * * * *  —ed 0
* * * * * * *xI — W}
PBAK+AK'B™P 0 0 0 0 0 AKTE] AKT]
* 00000 O 0
* * 0000 0 0
* %000 0 0
+ * xxx00 0 o0 ©
* X hKxx 0 0 0
* L. .. & SE] 0
* *hkkKhk kI 0
where

2, = PA,+ A+ PBK+K"BTP+ (¢, ++¢,)PD,DIP

+ e,PD,DIP+ ¢, PD,DIP+ ¢ 'EITE,
By applying Fact 2 to second matrix on left-hand sides
of Eq. (33), we have

PBD, KTE"
O 1 FLEE 0~ 01+ O |FI[DIBTP 0 - 0]
0 0
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e 5PBD4D4TBTP)
+¢ \KTEJEK

< ’ N (34)
0 0 0
0 KTEE
0 |FWLEK 0~ o1+| O |FI(»[0 - 0 DIET 0]
3Dy 0
0
eg 'K'E[EK 0 0 0
0 0 - 0 0
< : P : . (35)
0 0 - £¢E,D,DIET 0
0 0 - 0 0
0] KTER
I FCOLEK 0 - 0]+ 0 | FI(olo - 0 DJ]
D, 0
e; ‘K'E[E,K 0 0
< 0 L (36)
0 0 - &,0,D]]

Using the inequalities (34), (35) and (36), the new bound
of the inequality (33) is

L, —PA,A, 0 hl I ET KTET K
* =, F —rAT —AT —-ATET 0
* * -r7'Q 0 0 0 0 0
>* * * -r'Q 0 0 0 <0
* * * *x Wt 0 0
* »* * * * —e,I 0 0
* * * * * * 0
* * * * * * *I I,
(37
where
T, = %,+¢PBD,DIB'P+¢ 'KTETE K,
++e; 'KTE]E, K+, 'K'E'E,K,
T, = ¢ 'AJETEA| + F+FT (38)
L5 = —egl+egEDDIE;
2g = — W{1+87D4D41T'
Let
X=P ! R=mQ~!, Y=KX, RFR=1L. (39)
Pre-and post-multiplying both sides of Eq. (37) by
diag{P,R,R,I,1,1,1, I} leads to
=, ~AAR 0 kX X XEY Y'ET Y
* b L —hRAT —RAT —RATET 0 0
* * -R 0 0 0 0 0
* * * —R 0 0 0 0| ¢p
* * * * - Wt 0 0 0
* * * * * —e, 0 0
* * * * * * =000
* * * * * *1 =
where

Z, = AX+ XA+ BY+Y'BT+ (¢, +e)D,DF +¢,D,D7

+e3D,D] e 'XETE, X+ ¢, BD,DIBT

+e5 'YTE[E, Y+ ey \YTE]E, Y+, 'YTEIE,Y,
Sy = ¢, 'RATETELA\R+L+LT

(41)

By Fact 1, Eq. (40) is equivalent to LMI (12). Therefore,
system (1) under controller (7) is asymptotically stable if
LMIs (12) and (13) hold.
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which
minimizes the upper bound value of cost function (4). If
inequality (12) holds, Eq. (19) can be

V(z, < — (T Wx() + uT() Wyae(D)<0.  (42)
Integrating both sides of (42) from 0 to ¢, and using

Next, we derive the sufficient condition,

initial conditions, we get
J < Wz0)— Wz t)

= 27(0)Pz(0) + f_ohqu () Qb (w)duds
+ [1 079 Te(ds—2T(1)Pe(t)
[ e eduauas— [ 579 Te(as

Since we already established the asymptotic stability of

(43)

closed-loop system (10), when ¢/>o0, the following terms

go to zero:
27(tpPz(t)—0, (44)
¢ ¢
ft wfxT(u) Qx( ) duds—0, (45)
ft t_!hx T(s) Tx(s)ds—0. (46)

Therefore, we get the upper bound of cost function (4)
0
7 < 2P0+ [ [07(0 @0 (w)auds
0 7
+ [ 75 To(s)ds.
—h

(47)

In order to obtain the optimum value of guaranteed cost
(47), we establish a new upper bound of right terms and
minimize it. To do this, we find the upper bound of each
term or right hand side in (47).
First of all, we consider the first term of right hand side
in Eq. (47). Then we select a>( which satisfies
—a+27(0)P2(0)<0. (48)
For the second and third terms of right hand side in Eq.
(47), it is easy to show that

f‘oth) T(10) Qd(w)duds = Trace(N,NYQ) (49)
= Trace( h(NIR ~'N),
fifl) T(5) Qp(9)ds = Trace(NNT(e, 'EIE,)) (50)

= Trace(N7(ey 'ETE,)N).
M>0 and

M,>0, the minimization of two values given (49) and

Then by introducing two design variables
(50) can be solved by the following inequalities:
— M+ hNTR "IN 0, (51)
— My+ N¥(e5 'ETE (/0. (52)
By Fact 1, inequalities (48), (51), and (52) are equivalent
to LMis (14), (15), and (16), respectively. Therefore, the
guaranteed cost is J = a+ Trace(M;)+ Trace(M,). This
completes our proof. |
Remark 1. The matrices D; and E,; determine the

non-fragility of the controller gain matrices.



Remark 2. The LMIs (12)-(16) in Theorem 1 can be
easily solved by various efficient convex algorithms. In
this paper, we utilize Matlab's LMI Control Toolbox [27]
which  implements algorithms.  These
algorithms are significantly faster than classical convex
optimization algorithms [26].

interior—point

4. Numerical Examples

Example 1! Consider the uncertain time-delay system
studied in [15]:

x(D=(A+2A)x(D+ (A, +AADx(t— 1) +(B+AB)u(),

(53)
where system matrices are

a=[9 1], Alz[o(.)l o1l B=[4). (64)
and parameter uncertainties are

R NI L

I (!

Let's choose the weighting matrices of cost functino (4)
as

(55)

w=[19, m=1. (56)
Assume that the initial functions are
x1(8)=0.5¢ "2, xyp=—e*? forsec[~1,0]. For fair

comparison with the work in [15], we take that AK is
zero matrix, In [15], the gain matrix of guaranteed cost

controller and guaranteed cost are

K=[—6.2851 —5.4812] and J =3.5073. However, by
applying Theorem 1, the guaranteed cost is J'=1.3161,
and the corresponding controller, which guarantees the
system (53) is asymptotically stable and minimizes the
upper bound value of cost function, is

W =1-10304 —4.3206)(x(0+ [ Ax9as). (67

This result shows that our method gives a less upper
bound of cost function compared with the method
proposed by Chen [15] via the delayed feedback.

Example 2! Consider the following uncertain time delay
systems:

() = (A+2A)x()+ (A +AADx(t—0.5) +(B+ABu(p),

o(9) = [eaﬂ], se[—0.5,0],

(58)
where system matrices are
10 0 -1 -1 10
e I PO i B 1 (59)
and parameter uncertainties are
_n_102 0 _| 0
Di=D.=" 0.2]’ Dy [0.2]’ (60)
B=5=1Y m-1

ANAES S8 S84 AR Aot b2ty MSEE Hol7] dA
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We also consider the weighting matrices of the cost
function as

mz[(l) o, m=1. (61)

Table 1 shows the results of controller gain matrices
with respect to the controller uncertainties by applying
Theorem 1. From table 1, if we increase the controller
gain variations, then the guaranteed cost becomes large,
which means the stabilization condition becomes
conservative due to the controller gain perturbations AK.
In table 2, we showed the real cost function value with
respect to controller gain uncertainties. From table 2, we
can see that even if the controller uncertainties exists,
the real cost function values do not have heavily different
This proposed method provides

non-fragility of the proposed controllers.

ones. shows the

Table 1 The guaranteed cost and controller gain matrices
with respect to controller uncertainties

Controller
- T K

Uncertainties
D,=0, E,=0 5.5896 [0.3079 —27.2925]
D,=0.1, E,=1 |5.6473 [0.1024 —11.4240]
D,=0.2, E,=1 |5.7753 [0.0708 —2.9207]
Dy=0.3, E,=1 |5.9008 [0.0474 —1.4267]
D,=0.4, E,=1 6.0036 [0.0297 —0.7750]

Table 2 Real cost function value with respect to controller
uncertainties

Controller
Controller Gain J

Uncertainties
D=0, E,=0 [0.3079 —27.2925] 3.5007
D,=0.1, E,=1 |[0.1024 —11.4240]+AK | 3.5911
D,=0.2, E;=1 |[0.0708 —2.92071+AK | 8.5872
D,;=0.3, E,=1 |10.0474 —1.4267]+AK | 3.5883
D,=0.4, E,=1 |[0.0297 —0.7750]4+AK | 3.5907

5. Conclusions

In this feedback
guaranteed cost controller design method for uncertain

paper, a delayed non-fragile
linear systems with time delay has been proposed. An
optimization problem, which can be solved effectively by
optimizatin algorithms, is expressed in terms of LMIs to
design the controller with feedback of the current state
ans past history of the state. This controller stabilizes the
closed-loop system and minimizes the upper bound value
of cost function. Two examples showed the effectiveness
of our proposed method.
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