• Title/Summary/Keyword: Lyapunov Function

Search Result 494, Processing Time 0.02 seconds

Robust DTC Control of Doubly-Fed Induction Machines Based on Input-Output Feedback Linearization Using Recurrent Neural Networks

  • Payam, Amir Farrokh;Hashemnia, Mohammad Naser;Fai, Jawad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.719-725
    • /
    • 2011
  • This paper describes a novel Direct Torque Control (DTC) method for adjustable speed Doubly-Fed Induction Machine (DFIM) drives which is supplied by a two-level Space Vector Modulation (SVM) voltage source inverter (DTC-SVM) in the rotor circuit. The inverter reference voltage vector is obtained by using input-output feedback linearization control and a DFIM model in the stator a-b axes reference frame with stator currents and rotor fluxes as state variables. Moreover, to make this nonlinear controller stable and robust to most varying electrical parameter uncertainties, a two layer recurrent Artificial Neural Network (ANN) is used to estimate a certain function which shows the machine lumped uncertainty. The overall system stability is proved by the Lyapunov theorem. It is shown that the torque and flux tracking errors as well as the updated weights of the ANN are uniformly ultimately bounded. Finally, effectiveness of the proposed control approach is shown by computer simulation results.

Development of Lane Change System considering Acceleration for Collision Avoidance (충돌회피를 위한 가속도를 고려한 차선 변경 시스템 개발)

  • Kang, Hyunkoo;Lee, Donghwi;Huh, Kunsoo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-86
    • /
    • 2013
  • This paper presents the lane change system for collision avoidance. The proposed algorithm for the collision avoidance consists of path generation and path following. Using a calculated TTC (Time to Collision), partial braking is operated and collision avoidance path is generated considering relative distance, velocity and acceleration. Based on the collision avoidance path, desired yaw angle and yaw rate are calculated for the automated path following. The lateral controller is designed by a Lyapunov function approach using 3 D.O.F vehicle model and vehicle parameters. The required steering angle is determined from wheel velocity, longitudinal and lateral velocity in order to follow the desired yaw angle and yaw rate. This system is developed MATLAB/Simulink and its performance is evaluated using the commercial software CarSim.

Adaptive second-order nonsingular terminal sliding mode power-level control for nuclear power plants

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1644-1651
    • /
    • 2022
  • This paper focuses on the power-level control of nuclear power plants (NPPs) in the presence of lumped disturbances. An adaptive second-order nonsingular terminal sliding mode control (ASONTSMC) scheme is proposed by resorting to the second-order nonsingular terminal sliding mode. The pre-existing mathematical model of the nuclear reactor system is firstly described based on point-reactor kinetics equations with six delayed neutron groups. Then, a second-order sliding mode control approach is proposed by integrating a proportional-derivative sliding mode (PDSM) manifold with a nonsingular terminal sliding mode (NTSM) manifold. An adaptive mechanism is designed to estimate the unknown upper bound of a lumped uncertain term that is composed of lumped disturbances and system states real-timely. The estimated values are then added to the controller, resulting in the control system capable of compensating the adverse effects of the lumped disturbances efficiently. Since the sign function is contained in the first time derivative of the real control law, the continuous input signal is obtained after integration so that the chattering effects of the conventional sliding mode control are suppressed. The robust stability of the overall control system is demonstrated through Lyapunov stability theory. Finally, the proposed control scheme is validated through simulations and comparisons with a proportional-integral-derivative (PID) controller, a super twisting sliding mode controller (STSMC), and a disturbance observer-based adaptive sliding mode controller (DO-ASMC).

Robust Observer Design for SDINS In-Flight Alignment (스트랩다운 관성항법시스템의 주행 중 정렬을 위한 강인 관측기 구성)

  • Yu, Myeong-Jong;Lee, Jang-Gyu;Park, Chan-Guk;Sim, Deok-Seon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.8
    • /
    • pp.703-710
    • /
    • 2001
  • The nonlinear observers are proposed for a nonlinear system. To improve the characteristics such as stability, convergence, and $H^{\infty}$ filter performance criterion, we utilize an $H^{\infty}$ filter Riccati equation or a modified $H^{\infty}$ filter Riccati equation with a freedom parameter. Using the Lyapunov function method, the characteristics of the observers are analyzed. Then the in-flight alignment for a strapdown inertial navigation system(SDINS) is designed using the proposed observer. And the additive quaternion error model is especially used to reduce the uncertainty of the SDINS error model. Simulation results show that the observer with the modified $H^{\infty}$ filter Riccati equation effectively improves the performance of the in-flight alignment.

  • PDF

Smart composite repetitive-control design for nonlinear perturbation

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.473-485
    • /
    • 2024
  • This paper proposes a composite form of fuzzy adaptive control plan based on a robust observer. The fuzzy 2D control gains are regulated by the parameters in the LMIs. Then, control and learning performance indices with weight matrices are constructed as the cost functions, which allows the regulation of the trade-off between the two performance by setting appropriate weight matrices. The design of 2D control gains is equivalent to the LMIs-constrained multi-objective optimization problem under dual performance indices. By using this proposed smart tracking design via fuzzy nonlinear criterion, the data link can be further extended. To evaluate the performance of the controller, the proposed controller was compared with other control technologies. This ensures the execution of the control program used to track position and trajectory in the presence of great model uncertainty and external disturbances. The performance of monitoring and control is verified by quantitative analysis. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

A Study on I-PID-Based 2-DOF Snake Robot Head Control Scheme Using RBF Neural Network and Robust Term (RBF 신경망과 강인 항을 적용한 I-PID 기반 2 자유도 뱀 로봇 머리 제어에 관한 연구)

  • Sung-Jae Kim;Jin-Ho Suh
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.139-148
    • /
    • 2024
  • In this paper, we propose a two-degree-of-freedom snake robot head system and an I-PID (Intelligent Proportional-Integral-Derivative)-based controller utilizing RBF (Radial Basis Function) neural network and adaptive robust terms as a control strategy to reduce rotation occurring in the snake robot head. This study proposes a two-degree-of-freedom snake robot head system to avoid complex snake robot dynamics. This system has a control system independent of the snake robot. Subsequently, it utilizes an I-PID controller to implement a control system that can effectively manage rotation at the snake robot head, the robot's nonlinearity, and disturbances. To compensate for the time delay estimation errors occurring in the I-PID control system, an RBF neural network is integrated. Additionally, an adaptive robust term is designed and integrated into the control system to enhance robustness and generate control inputs responsive to signal changes. The proposed controller satisfies stability according to Lyapunov's theory. The proposed control strategy was tested using a 9-degreeof-freedom snake robot. It demonstrates the capability to reduce rotation in Lateral undulation, Rectilinear, and Sidewinding locomotion.

Design of Robust Fuzzy Controllers via Inverse Optimal Approach (역최적화 방법을 이용한 강인한 퍼지 제어기의 설계)

  • 곽기호;임재환;박주영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.477-486
    • /
    • 2001
  • In this paper , we study the problem of designing TS(Takagi-Sugeno) fuzzy controllers for the systems that can be approximated or represented by the TS fuzzy model. The main strategy used in this paper is the inverse optimal approach, in which the cost function is determined later than the Lyapunov function and its corresponding control input satisfying the design requirements such as stability, decay rate, and robustness against uncertainty. This approach is useful because it yields controllers satisfying the inherent robustness of optimal controllers as well as the considered design goals. The design procedures established in this paper are all in the from of solving LMIs(Iinear matrix inequalities). Since the LMIs arising in the design procedures can be solved within a given tolerance by the interior point methods. the design method of the paper are efficient in practice. The applicability of the proposed design procedures is demonstrated by design examples.

  • PDF

Nonlinear Dynamic Analysis of EEG in Patients with Positive and Negative Schizophrenia (양성 및 음성 정신분열증 환자 뇌파의 비선형 역동 분석)

  • Chae, Jeong-Ho;Pak, E-Jin;Kim, Dai-Jin;Jeong, Jae-Seung;Kim, Soo-Yong;Kim, Kwang-Soo
    • Sleep Medicine and Psychophysiology
    • /
    • v.5 no.2
    • /
    • pp.185-193
    • /
    • 1998
  • Objectives : The hypothesis that the brain is a nonlinear dynamical system exhibiting deterministic chaos has offered new perspectives to the investigation of information processing in the brain of schizophrenic patients. It seemed worthwhile to estimate nonlinear measures of the electroencephalogram (EEG) in positive and negative schizophrenics, because nonlinear measures might serve as indicators of the specific brain function in schizophrenia according to specific psychopathologies. Method : Previous studies which estimated the chaoticity in the brain of schizophrenia with nonlinear methods recorded the EEGs at limited electrodes, so we tried to record EEGs from 16 channels for nonlinear analysis in 8 positive and 9 negative schizophrenics and 8 healthy control subjects. We employed a new method to calculate the nonlinear invariant measures. For limited noisy data, this algorithm was strikingly faster and more accurate than previous ones. Results : Our results showed that the patients with negative schizophrenia had lower the first positive Lyapunov exponents ($L_1$) than the positive schizophrnics and control subjects at $T_3$ lead. Positive symptoms were positively correlated with $L_1$ in $C_3,\;O_1$ leads, and negatively correlated with $C_4$ lead. Conclusion : These results suggest that if clinical variables such as psychopathology or neuroleptic medications would be well controlled, the nonlinear analysis of the EEGs in patients with schizophrenia seems to be a useful tool in analyzing EEG data to explore the neurodynamics.

  • PDF

A study on simulation and performance improvement of industrial robot manipulator controller using adaptive model following control method (적응모델추종제어기법에 의한 산업용 로봇 매니퓰레이터 제어기의 성능개선 및 시뮬레이션에 관한 연구)

  • 허남수;한성현;이만형
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.463-477
    • /
    • 1991
  • This study proposed a new method to design a robot manipulator control system capable of tracking the trajectories of joint angles in a reasonable accuracy to cover with actual situation of varying payload, uncertain parameters, and time delay. The direct adaptive model following control method has been used to improve existing industrial robot manipulator control system design. The proposed robot manipulator controller is operated by adjusting its gains based on the response of the manipulator in such a way that the manipulator closely matches the reference model trajectories predefined by the designer. The manipulator control system studied has two loops: they are an inner loop on adaptive model following controller to compensate nonlinearity in the manipulator dynamic equation and to decouple the coupling terms and an outer loop of state feedback controller with integral action to guarantee the stability of the adaptive scheme. This adaptation algorithm is based on the hyperstability approach with an improved Lyapunov function. The coupling among joints and the nonlinearity in the dynamic equation are explicitly considered. The designed manipulator controller shows good tracking performance in various cases, load variation, parameter uncertainties. and time delay. Since the proposed adaptive control method requires only a small number of parameters to be estimated, the controller has a relatively simple structure compared to the other adaptive manipulator controllers. Therefore, the method used is expected to be well suited for a high performance robot controller under practical operation environments.

A Hybrid Guidance Law for a Strapdown Seeker to Maintain Lock-on Conditions against High Speed Targets

  • Lee, Chae Heun;Hyun, Chul;Lee, Jang Gyu;Choi, Jin Yung;Sung, Sangkyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.190-196
    • /
    • 2013
  • This paper proposes a new guidance law, which considers the Field of View (FOV) of the seeker when a missile has a strapdown seeker mounted instead of a gimbal seeker. When a strapdown seeker, which has a narrow FOV, is used for tracking a target, the FOV of the seeker is an important consideration for guidance performance metrics such as miss distance. We propose a new guidance law called hybrid guidance (HG) to address the shortcomings of conventional guidance laws such as proportional navigation guidance (PNG), which cannot maintain lock-on conditions against high speed targets due to the narrow FOV of the strapdown seeker. The aim of the HG law is to null miss distance and to maintain the look angle within the FOV of the strapdown seeker. In order to achieve this goal, we combine two guidance laws in the HG law. One is a PNG law to null the LOS rate, and the other is a sliding mode guidance (SMG) law derived to keep the look angle within the FOV by employing a Lyapunov-like function with a sliding mode control methodology. We also propose a method to switch these two guidance laws at certain look angles for better guidance performance.