• 제목/요약/키워드: Lyapunov Function

검색결과 493건 처리시간 0.042초

회전 관절형 로봇의 강인제어 (Robot Control of a Revolute Joint Robot)

  • 이수한;김태균
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.265-270
    • /
    • 2001
  • In this paper, a robust controller is proposed to control a robot manipulator which is governed by highly nonlinear dynamic equations. The controller is computationally efficient since it does not require the dynamic model or parameter values of a robot manipulator. It, however, requires uncertainty bounds which are derived by using properties of revolute joint robot dynamics. The stability of the robot with the controller is proved by using Lyapunov's direct method. The results of computer simulations also show that the robot system is stable, and has excellent trajectory tracking performance.

  • PDF

A DESIGN METHOD OF LYAPUNOV-STABLE MMG FUZZY CONTROLLER

  • Hara, Fumio;Yamamoto, Kazuomi
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.873-876
    • /
    • 1993
  • A fuzzy controller designed by mini-max-gravity(MMG) method is essentially nonlinear with respect to the controller's input and output relationship, and stability analysis is thus needed to construct a stable control system. This paper deals with a design method of a position-type MMG fuzzy controller stable in a sense of Lyapunov when considered is a single-input-single-output linear, stable plant. We first introduce a method to construct a Laypunov function by using an eigen-value of A matrix of the linear, stable plant dynamics and then we derive an asymtotic stability condition in terms of scale factors for fuzzy state variables and controller gain. The stability condition is found reasonably practical through comparing the theoretical stability region with that obtained from simulations.

  • PDF

슬라이딩 표면을 이용한 로봇 매니퓰레이터의 강건한 적응 마찰 제어 (A Robust Adaptive Friction Control of Robot Manipulators using Sliding Surface)

  • 배준경
    • 전기학회논문지
    • /
    • 제60권11호
    • /
    • pp.2139-2146
    • /
    • 2011
  • In this paper, a robust adaptive controller is proposed for trajectory tracking of robot manipulators with the unknown friction coefficient and bounded disturbance. A new adaptive control law is developed based on sliding mode and derived from the Lyapunov stability analysis. The introduction of a boundary layer solves the problem of chattering. The proposed adaptive controller is globally asymptotically stable and guarantees zero steady state error for joint positions. The estimated friction coefficients can also approach the actual coefficients asymptotically. A simulation example is provided to demonstrate the performance of the proposed algorithm.

포화 구동기를 갖는 시간지연 선형시스템의 $H_{\infty}$ 추종 제어기 ([ $H_{\infty}$ ] Tracking Control of Time-delayed Linear Systems with Saturating Actuators)

  • 이연규;김진훈
    • 전기학회논문지
    • /
    • 제57권4호
    • /
    • pp.668-676
    • /
    • 2008
  • In this paper, we considered the $H_{\infty}$ tracking control for time-delayed linear systems with saturating actuators. The considered time delay is a time varying one having bounded magnitude and rate, and the considered tracking reference is a general one only known its bounds of magnitude and rate. First, we have converted the $H_{\infty}$ tracking control problem into an equivalent $H_{\infty}$ disturbance attenuation problem using two steps of transformations. Next, based on a new Lyapunov-Krasovskii functional, we have derived the result in the form of LMI with two non-convex parameters. Finally, by numerical examples, we have shown the usefulness and effectiveness of our result.

Control of the pressurized water nuclear reactors power using optimized proportional-integral-derivative controller with particle swarm optimization algorithm

  • Mousakazemi, Seyed Mohammad Hossein;Ayoobian, Navid;Ansarifar, Gholam Reza
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.877-885
    • /
    • 2018
  • Various controllers such as proportional-integral-derivative (PID) controllers have been designed and optimized for load-following issues in nuclear reactors. To achieve high performance, gain tuning is of great importance in PID controllers. In this work, gains of a PID controller are optimized for power-level control of a typical pressurized water reactor using particle swarm optimization (PSO) algorithm. The point kinetic is used as a reactor power model. In PSO, the objective (cost) function defined by decision variables including overshoot, settling time, and stabilization time (stability condition) must be minimized (optimized). Stability condition is guaranteed by Lyapunov synthesis. The simulation results demonstrated good stability and high performance of the closed-loop PSO-PID controller to response power demand.

GLOBAL STABILITY OF VIRUS DYNAMICS MODEL WITH IMMUNE RESPONSE, CELLULAR INFECTION AND HOLLING TYPE-II

  • ELAIW, A.M.;GHALEB, SH.A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제23권1호
    • /
    • pp.39-63
    • /
    • 2019
  • In this paper, we study the effect of Cytotoxic T Lymphocyte (CTL) and antibody immune responses on the virus dynamics with both virus-to-cell and cell-to-cell transmissions. The infection rate is given by Holling type-II. We first show that the model is biologically acceptable by showing that the solutions of the model are nonnegative and bounded. We find the equilibria of the model and investigate their global stability analysis. We derive five threshold parameters which fully determine the existence and stability of the five equilibria of the model. The global stability of all equilibria of the model is proven using Lyapunov method and applying LaSalle's invariance principle. To support our theoretical results we have performed some numerical simulations for the model. The results show the CTL and antibody immune response can control the disease progression.

국소 천이규칙을 갖는 셀룰러 오토마타를 이용한 영상 첨예화 (Image Sharpening based on Cellular Automata with the Local Transition Rule)

  • 이석기
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.502-504
    • /
    • 2010
  • 영상 강조를 위하여 새로운 셀룰러 오토마타의 천이규칙을 제안하고 그것을 이용한 첨예화 알고리즘을 제안한다. 천이 규칙은 순차적이고 병렬적인 움직임을 가지며 Lyapunov함수를 만족한다. 영상 첨예화는 셀룰러 오토마타의 고정된 점으로 수렴하는 동적인 특성을 이용하여 천이 규칙을 개발, 실험하였다. 영상에 대한 사전지식 없이 상대적으로 밝기값의 차이가 완만한 부분에 연산을 집중해 효율적인 첨예화된 영상을 얻을 수 있다.

불확실 로봇 시스템의 견실 하이브리드 제어기 설계 (Robust Hybrid Control for Uncertain Robot Manipulators)

  • 한명철
    • 한국정밀공학회지
    • /
    • 제14권7호
    • /
    • pp.73-81
    • /
    • 1997
  • An new class of robust position/force hybrid control law is proposed for uncertain robot manipulators. The uncertainty is nonlinear and (plssibly fast) time-varying. Therefore, the uncertain factors such as imper- fect modeling, friction, payload change, and external disturbance are all addressed. Based on the possible bound of the uncertainty, the controller is constructed and the stability study based on Lyapunov function is presented. To show that the proposed control laws are indeed applicable, the theoretical result is applied to a SCARA-type robot manipulator and simulation result is presented.

  • PDF

계단모양 소속 함수 근사를 이용한 구간 2형 퍼지 시스템의 관측기 기반 제어기 설계 (Design of Observer-based Controller for Interval Type-2 Fuzzy System Using Staircase Membership Function Approximation)

  • 김한솔;주영훈;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.1732-1733
    • /
    • 2011
  • This paper presents observer-based controller design for interval type-2 fuzzy system with staircase membership approximation. In type-2 fuzzy case, membership function is itself fuzzy set itself. Thus, type-2 fuzzy system can deal with parametric uncertainties of nonlinear system by capturing the uncertainties in membership function. Likewise, stabilization condition of type-2 fuzzy system is derived from quadratic Lyapunov function, and it goes to linear matrix inequality. Furthermore, in this paper, to relax the conservativeness of stabilization condition, staircase membership function approximating method is applied. Observer-based control method is adopted to control system which has some unmeasurable states. To prove suitability of our proposed method, numerical example is presented.

  • PDF

A Robust Control with a Neural Network Structure for Uncertain Robot Manipulator

  • Han, Myoung-Chul
    • Journal of Mechanical Science and Technology
    • /
    • 제18권11호
    • /
    • pp.1916-1922
    • /
    • 2004
  • A robust position control with the bound function of neural network structure is proposed for uncertain robot manipulators. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, and etc. Therefore, uncertainties are often nonlinear and time-varying. The neural network structure presents the bound function and does not need the concave property of the bound function. The robust approach is to solve this problem as uncertainties are included in a model and the controller can achieve the desired properties in spite of the imperfect modeling. Simulation is performed to validate this law for four-axis SCARA type robot manipulator.