• Title/Summary/Keyword: Luting cement

Search Result 102, Processing Time 0.024 seconds

THE EFFECT OF TEMPORARY CEMENT AND DESENSITIZER ON THE BOND STRENGTH OF LUTING CEMENTS (접착용 시멘트의 결합강도에 임시 접착제와 탈감작제가 미치는 영향)

  • Sun Se-Na;Yang Hong-So;Park Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.335-343
    • /
    • 2002
  • This study investigated the effect of temporary cement and desensitizer on the bond strength of luting cements. Total 96 dentin specimens were divided into two groups with and without temporary cementation. For temporary cement-tread group, specimens were cemented with $Temp-bond^{(R)}$ and all specimens were stored in distilled water at $37^{\circ}C$ for 7 days. Each cup was further divided into 3 subgroups with $Gluma^{(R)},\;One-step^{(R)}$ application and without desensitizer After desensitizer application, Ni-Cr specimens were luted to dentin surface with $Panavia-F^{(R)}$ and $Vitremer^{(R)}$ Specimens were placed in distilled water at $37^{\circ}C$ for 24 hours and shear bond strength between metal and dentin was measured by a universal testing machine. The results were as follows : 1. In $Panavia-F^{(R)}$ cemented groups, the combination of $One-step^{(R)}$ without temporary cement showed the greatest strength. Among the desensitizer types, $One-step^{(R)}$ showed the highest bond strength, followed by No-desensitizer, $Gluma^{(R)}$. 2. In $Vitremer^{(R)}$ cemented groups, the combination of no temporary cement and without desensitizer showed the greatest bond strength. Among the desensitizer types, No-desensitizer group showed the highest bond strength. 3. The use of $Gluma^{(R)}$ significantly reduced the shear bond strength in $Panavia-F^{(R)}$ and $Vitremer^{(R)}$ groups. 4. All temporary cement-treated groups showed a significant lower shear bond strength than without temporary cement groups. 5. Desensitizer application significantly influenced the bond strength of the resin cement and resin modified glass ionomer cement.

TENSILE STREGNTH BETWEEN MACHINABLE CERAMIC AND DENTIN CEMENTED WITH LUTING COMPOSITE RESIN CEMENTS (합착용 복합레진시멘트로 합착한 Machinable Ceramic과 상아질 사이의 인장강도에 대한 실험적 연구)

  • Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.487-501
    • /
    • 1998
  • In the case of CAD/CAM ceramic inlay restorations, if isthmus width is widened too much, it may cause fracture of remaining tooth structure or loss of bonding at the luting interface because of excessive displacement of buccal or lingual cusps under occlusal loads. So to clarify the criterior of widening isthmus width, this study was designed to test the tensile bond strength and bond failure mode between dentin and ceramic cemented with luting composite resin cements. Cylindrical ceramic blocks(Vita Cerec Mark II, d=4mm) were bonded to buccal dentin of 40 freshly extracted third molars with 4 luting composite resin cements(group1 : Scotchbond Resin Cement/Scotchbond Multi-Purpose, group2 : Duolink Resin Cement/ All-Bond 2, group3: Bistite Resin Cement/Ceramics Primer, and group4:Superbond C&B). Tensile bond test was done under universal testing machine using bonding and measuring alignment blocks(${\phi}ilo$ & Urn, 1992). After immersion of fractured samples into 1 % methylene blue for 24 hours, failure mode was analysed under stereomicroscope and SEM. Results: The tensile bond strength of goup 1, 2 & 4 was $13.97{\pm}2.90$ MPa, $16.49{\pm}3.90$ MPa and $16.l7{\pm}4.32$ MPa, respectively. There was no statistical differences(p>0.05). But, group 3 showed significantly lower bond stregnth($5.98{\pm}1.l7$ MPa, p<0.05). In almost all samples, adhesive fractures between dentin and resin cements were observed. But, in group 1, 2 & 4, as bond strength increased, cohesive fracture within resin cement was observed simultaneously. And, in group 3, as bond strength decreased, cohesive fracture between hybrid layer and composite resin cement was also observed. Cohesive fracture within dentin and porcelain adhesive fracture were not observed. In conclusion, although adhesive cements were used in CAD/CAM -fabricated ceramic inlay restorations, the conservative priciples of cavity preparation must be obligated.

  • PDF

EFFECTS OF VARIOUS CEMENTS AND THERMOCYCLING ON RETENTIVE STRENGTHS OF CEMENTED IMPLANT-SUPPORTED PROSTHESES (시멘트 유지형 임플란트 보철물의 유지력에 시멘트의 종류와 열순환이 미치는 영향에 관한 연구)

  • Cho Jae-Ho;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.4
    • /
    • pp.466-475
    • /
    • 2003
  • Statement of problem : In cemented implant-supported porstheses, it is still controversy what kind of cement to use. However, the effect of thermocycling on retentive strength of cemented implant-supported prostheses has not been well investigated. Purpose : This study was tested to evaluate the effects of various cements and thermocycling on retentive strengths of cemented implant-supported prostheses. Material and methods : Prefabricated implant abutments, height 5mm, diameter 6mm, 3-degree taper per side, with light chamfer margins were used. Ten specimens of two-unit fred partial denture were fabricated. The luting agents used for this study were three provisional luting agents which were Temp bond, Temp bond NE, IRM and four permanent luting agents which were Panavia F, Fuji-cem, Hy-bond Zinc cement, Hy-bond Polycarboxylate cement. 24 hours after cementation. the retentive strengths were measured by the universal testing machine with a cross-head speed of 0.5mm/min. Then cementation procedures were repeated and specimens were thermocycled 1000 times at temperature of $5^{\circ}C$ and $55^{\circ}C$. After thermocycling, the retentive strengths were measured. Results : Before thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem. Hy-bond Zinc cement. Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were significant differences among each groups(p<0.05). After thermocycling, the retentive strengths were decreased with the sequence of Panavia F. Fuji-cem, Hybond Zinc cement, Hy-bond Polycarboxylate cement, IRM, Temp bond NE and Temp bond, and there were no significant differences among Panavia F, Fuji-cem and Temp bond NE, Temp bond(p>0.05). The retentive strengths before and after thermocycling showed significant differences in Hy-bond Zinc cement. IRM, Temp bond NE and Temp bond(p<0.05). Conclusion : Within the limitation of this study, thermocycling do not affect the retentive strengths of permanent luting agents but the retentive strengths of temporary cements were reduced significantly after thermocyling.

Biomechanical three-dimensional finite element analysis of monolithic zirconia crown with different cement type

  • Ha, Seung-Ryong
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.475-483
    • /
    • 2015
  • PURPOSE. The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS. The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS. Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION. The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns.

SHEAR BOND STRENGTH OF PRETREATED DENTIN SURFACE WITH RESIN-REINFORCED GLASS IONOMER CEMENT (상아질의 치면 처리에 따른 합착용 레진 강화형 글라스 아이오노머 시멘트의 전단결합강도)

  • Choi Hye-Souk;Lee Cheong-Hee;Jo Kwang-Hun;Kim Kyo-Han
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.5
    • /
    • pp.502-513
    • /
    • 2001
  • The purpose of this study was to evaluate the effect of dentin pretreatment with Dentin Conditioner, Ultra-Etch, conditioner of Fuji Plus cement on the shear bond strength of resin-reinforced glass ionomer cements to dentin and analyze the fractured surfaces. To evaluate the bond strength, the extracted human teeth which had uniform area of exposed dentin were cemented with conventional glass ionomer cement, 3M $RelyX^{TM}$ Luting (Vitremer luting cement), Fuji Plus cement after dentin pretreatment. The shear bond strength was measured using the Universal testing machine (Instron Co., USA) with a crosshead speed of 1mm/m. The effect of dentin pretreatment was evaluated by observing pretreated dentin surfaces under the scanning electron microscope, measuring the shear bond strength and observing the fractured surfaces under the scanning electron microscope. The results were as follows : On the SEM observation of surface morphology, the specimens treated with Dentin Conditioner. Ultra-Etch and conditioner of Fuji Plus cement were removed the smear layer and funneled dentinal tubules in dentin surfaces. In $RelyX^{TM}$ Luting cement group, shear bond strength of pretreated group was significantly higher than control group. In Fuji Plus cement group and Fuji I group, regardless of the type of pretreatment agents, there was tendency of increase in the shear bond strength. On the SEM observation of fractured surfaces, as the shear bond strength increase, it were shown thicker cement layers and were not shown dentinal tubules According to these results. it were shown that dentin pretreatment have much effect on bonding states.

  • PDF

Comparison between a bulk-fill resin-based composite and three luting materials on the cementation of fiberglass-reinforced posts

  • Carlos Alberto Kenji Shimokawa ;Paula Mendes Acatauassu Carneiro ;Tamile Rocha da Silva Lobo;Roberto Ruggiero Braga ;Miriam Lacalle Turbino;Adriana Bona Matos
    • Restorative Dentistry and Endodontics
    • /
    • v.48 no.3
    • /
    • pp.30.1-30.11
    • /
    • 2023
  • Objectives: This study verified the possibility of cementing fiberglass-reinforced posts using a flowable bulk-fill composite (BF), comparing its push-out bond strength and microhardness with these properties of 3 luting materials. Materials and Methods: Sixty endodontically treated bovine roots were used. Posts were cemented using conventional dual-cured cement (CC); self-adhesive cement (SA); dual-cured composite (RC); and BF. Push-out bond strength (n = 10) and microhardness (n = 5) tests were performed after 1 week and 4 months of storage. Two-way repeated measures analysis of variance (ANOVA), 1-way ANOVA, t-test, and Tukey post-hoc tests were applied for the push-out bond strength and microhardness results; and Pearson correlation test was applied to verify the correlation between push-out bond strength and microhardness results (α = 0.05). Results: BF presented higher push-out bond strength than CC and SA in the cervical third before aging (p < 0.01). No differences were found between push-out bond strength before and after aging for all the luting materials (p = 0.84). Regarding hardness, only SA presented higher values measured before than after aging (p < 0.01). RC and BF did not present 80% of the maximum hardness at the apical regions. A strong positive correlation was found between the luting materials' push-out bond strength and microhardness (p < 0.01, R2 = 0.7912). Conclusions: The BF presented comparable or higher push-out bond strength and microhardness than the luting materials, which indicates that it could be used for cementing resin posts in situations where adequate light curing is possible.

Comparative evaluation of micro-shear bond strength between two different luting methods of resin cement to dentin (합착 술식에 따른 레진 합착제의 상아질에 대한 미세전단결합강도의 비교 연구)

  • Lee, Yoon-Jeong;Park, Sang-Jin;Choi, Kyoung-Kyu
    • Restorative Dentistry and Endodontics
    • /
    • v.30 no.4
    • /
    • pp.283-293
    • /
    • 2005
  • The purpose of this study was to evaluate the effect of dual bonding technique by comparing microshear bond strength between two different luting methods of resin cement to tooth dentin. Three dentin bonding systems(All-Bond 2, One-Step, Clearfil SE Bond), two temporary cements (Propac, Freegenol) were used in this study. In groups used conventional luting procedure, dentin surfaces were left untreated. In groups used dual bonding technique, three dentin bonding systems were applied to each dentin surface. All specimens were covered with each temporary cement. The temporary cements were removed and each group was treated using one of three different dentin bonding system. A resin cement was applied to the glass cylinder surface and the cylinder was bonded to the dentin surface. Then, micro-shear bond strength test was performed. For the evaluation of the morphology at the resin/dentin interface, SEM examination was also performed. 1. Conventional luting procedure showed higher micro-shear bond strengths than dual boning technique. However, there were no significant differences. 2. Freegenol showed higher micro-shear bond strengths than Propac, but there were no significant differences. 3. In groups used dual bonding technique, SE Bond showed significantly higher micro-shear bond strengths in One-Step and All-Bond 2 (p<0.05), but there was no significant difference between One-Step and All-Bond 2. 4. In SEM observation, with the use of All-Bond 2 and One-Step, very long and numerous resin tags were observed. This study suggests that there were no findings that the dual bonding technique would be better than the conventional luting procedure.

Selection of Dental Cements (치과용 합착제의 선택)

  • Sung, Moo-Gyung
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.76-82
    • /
    • 1999
  • Zinc phosphate cement has long been the material of choice for permanent luting of cast restorations, and through many years of use has been considered effective to retain castings. However, cast restorations cemented with this material have been susceptible to secondary caries. Glass ionomer luting agents become available in the late 1970s. These material s, through release of fluoride, show considerable promise as a means of reducing secondary caries. Other favorable traits include significantly less disintegration in vivo than zinc phosphate cements, a film thickness comparable to that of zinc phosphate cement, and adhesion to tooth structure. Compomer materials were created in 1993 as a filling material for deciduous teeth, cervical lesions, and class III cavities. In the meantime, compomer have been developed as chemical hardening cements for cast gold restorations. The aim of this paper is to review the articles on luting cements to help the choice of dental cements.

  • PDF

Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces

  • Ozer, Fusun;Pak-Tunc, Elif;Dagli, Nesrin Esen;Ramachandran, Deepika;Sen, Deniz;Blatz, Markus Bernhard
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.340-346
    • /
    • 2018
  • PURPOSE. In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS. Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks ($5{\times}5{\times}3mm$) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS. Overall mean scores indicated that Co-Cr showed the highest SBS values ($1.96{\pm}0.4$) (P<.00), while Au-Pt showed the lowest among all metals tested ($1.57{\pm}0.4$) (P<.00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P<.00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score ($3.59{\pm}0.07$) among all cements tested (P<.00), while the resin-based temporary luting cement RXT showed the lowest ($0.39{\pm}0.07$) (P<.00). CONCLUSION. Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.

MARGINAL FITNESS AND MARGINAL LEAKAGE OF FIBER-REINFORCED COMPOSITE CROWNS DEFENDING UPON LUTING CEMENTS (섬유강화형 복합레진전장관의 변연적합도 및 변연누출에 관한 연구)

  • Kim, Sun-Jong;Shin, Sang-Wan;Han, Jung-Suk;Suh, Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.618-630
    • /
    • 2000
  • As Fiber-reinforced composite restorations cannot be made without leaving a marginal gap, luting cements play a pivotal role in sealing the margins as a prevention against margnal leakage. A recently introduced adhesive resin cement system is claimed to adhere chemically, as well as mechanically, to tooth substances, dental alloys and porcelain. But when considering the clinical variation conventional cementation using Zinc Phosphate and Glass-Ionomer can be requested. A vitro study was undertaken to compare microleakage and marginal fitness of Fiber-reinforced composite crowns(Targis/Vectris) depending upon luting cements. Fifty non-carious human premolar teeth were randomly divided into five experimental groups of 10 teeth each and luted with five luting cements. ($Bistite\;II^(R),\;Super-bond^(R),\;Variolink\;II^(R)$), Zinc phosphate and Glass-Ionomer cement) After 24 hours of being luted, all specimens were thermocycled 300 times through water bath of $5^{\circ}C\;and\;55^{\circ}C$ in each bath, then the quality of the marginal fitness was measured by the Digital Microscope and marginal leakage was characterized using Dye Penetration technique and the Digital Microscope The results were as follows : 1. The mean values of marginal fit were Bistite II($46.78{\mu}m$), Variolink II($56.25{\mu}m$), Super-Bond($56.78{\mu}m$), Glass-Ionomer($99.21{\mu}m$), Zinc Phosphate($109.49{\mu}m$) indicated a statistically significant difference at p<0.001. 2. The mean microleakage values of tooth-cement interface, restoration-cement interface were increased in the order of Variolink II, Bistite II, Super-Bond, Glass-Ionomer, Zinc Phosphate 3. Crowns luted with resin cement (Bistite II, Super-Bond, Variolink II, etc) exhibited less marginal gap and marginal leakage than those luted with conventional Glass-Ionomer and Zinc Phosphate cement. 4. The results indicated that all five luting systems yielded comparable and acceptable marginal fit.

  • PDF