• Title/Summary/Keyword: Lung cells

Search Result 2,114, Processing Time 0.033 seconds

Differential Roles of Lung Dendritic Cell Subsets Against Respiratory Virus Infection

  • Kim, Tae Hoon;Lee, Heung Kyu
    • IMMUNE NETWORK
    • /
    • v.14 no.3
    • /
    • pp.128-137
    • /
    • 2014
  • Respiratory viruses can induce acute respiratory disease. Clinical symptoms and manifestations are dependent on interactions between the virus and host immune system. Dendritic cells (DCs), along with alveolar macrophages, constitute the first line of sentinel cells in the innate immune response against respiratory viral infection. DCs play an essential role in regulating the immune response by bridging innate and adaptive immunity. In the steady state, lung DCs can be subdivided into $CD103^+$ conventional DCs (cDCs), $CD11b^+$ cDCs, and plasmacytoid DCs (pDCs). In the inflammatory state, like a respiratory viral infection, monocyte-derived DCs (moDCs) are recruited to the lung. In inflammatory lung, discrimination between moDCs and $CD11b^+$ DCs in the inflamed lung has been a critical challenge in understanding their role in the antiviral response. In particular, $CD103^+$ cDCs migrate from the intraepithelial base to the draining mediastinal lymph nodes to primarily induce the $CD8^+$ T cell response against the invading virus. Lymphoid $CD8{\alpha}^+$ cDCs, which have a developmental relationship with $CD103^+$ cDCs, also play an important role in viral antigen presentation. Moreover, pDCs have been reported to promote an antiviral response by inducing type I interferon production rather than adaptive immunity. However, the role of these cells in respiratory infections remains unclear. These different DC subsets have functional specialization against respiratory viral infection. Under certain viral infection, contextually controlling the balance of these specialized DC subsets is important for an effective immune response and maintenance of homeostasis.

Tumor Promoting Function of DUSP10 in Non-Small Cell Lung Cancer Is Associated With Tumor-Promoting Cytokines

  • Xing Wei;Chin Wen Png;Madhushanee Weerasooriya;Heng Li;Chenchen Zhu;Guiping Chen;Chuan Xu;Yongliang Zhang;Xiaohong Xu
    • IMMUNE NETWORK
    • /
    • v.23 no.4
    • /
    • pp.34.1-34.15
    • /
    • 2023
  • Lung cancer, particularly non-small cell lung cancer (NSCLC) which contributes more than 80% to totally lung cancer cases, remains the leading cause of cancer death and the 5-year survival is less than 20%. Continuous understanding on the mechanisms underlying the pathogenesis of this disease and identification of biomarkers for therapeutic application and response to treatment will help to improve patient survival. Here we found that a molecule known as DUSP10 (also known as MAPK phosphatase 5) is oncogenic in NSCLC. Overexpression of DUSP10 in NSCLC cells resulted in reduced activation of ERK and JNK, but increased activation of p38, which was associated with increased cellular growth and migration. When inoculated in immunodeficient mice, the DUSP10-overexpression NSCLC cells formed larger tumors compared to control cells. The increased growth of DUSP10-overexpression NSCLC cells was associated with increased expression of tumor-promoting cytokines including IL-6 and TGFβ. Importantly, higher DUSP10 expression was associated with poorer prognosis of NSCLC patients. Therefore, DUSP10 could severe as a biomarker for NSCLC prognosis and could be a target for development of therapeutic method for lung cancer treatment.

The TNF Receptor Expressions in Cancer Cells Transfected with TNF-$\alpha$ cDNA Using Retroviral Vector (Retroviral vector를 이용한 종양괴사인자 (TNF-$\alpha$) 유전자 이입 암세포에서 종양괴사인자 수용체의 발현)

  • Lee, Hyuk-Pyo;Yoo, Chul-Gyu;Kim, Young-Whan;Shim, Young-Soo;Han, Sung-Koo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.44 no.6
    • /
    • pp.1271-1284
    • /
    • 1997
  • Background : Tumor necrosis factor(TNF) has been considered as an important candidate for cancer gene therapy based on its potent anti-tumor activity. However, since the efficiency of current techniques of gene transfer is not satisfactory, the majority of current protocols is aiming the in vitro gene transfer to cancer cells and re-introducing genetically modified cancer cells to host. In the previous study, it was shown that TNF-sensitive cancer cells transfected with TNF-$\alpha$ cDNA would become highly resistant to TNF, and the probability was shown that the acquired resistance to TNF might be associated with synthesis of some protective protein. Understanding the mechanisms of TNF-resistance in TNF-$\alpha$ cDNA transfected cancer cells would be an important step for improving the efficacy of cancer gene therapy as well as for better understandings of tumor biology. This study was designed to evaluate whether the levels of TNF receptor mRNA expression and soluble TNF receptor release from cancer cells are changed after TNF-$\alpha$ cDNA transfection. Method : We transfected TNF-$\alpha$ c-DNA to WEHI164(murine fibrosarcoma cell line), NCI-H2058(human mesothelioma cell line), A549(human non-small cell lung cancer cell line), ME180(human cervix cancer cell line) cells using retroviral vector(pLT12SN(TNF)) and confirm the expression of TNF with PCR, EUSA, MTT assay. Then we determined the TNF resistance of TNF-$\alpha$ cDNA transfected cells(WEHI164-TNF, NCIH2058-TNF, A549-TNF, ME180-TNF) and evaluated the TNF receptor mRNA expression with Northern blot analysis and soluble TNF receptor release with EUSA. Results : The TNF receptor mRNA expressions of parental cells and genetically modified cells were not significantly different. The soluble TNF receptor levels of media from genetically modified cells were lower than those from parental cells. Conclusion : The acquired resistance to TNF after TNF-$\alpha$ cDNA transfection may not be associated with the change in the TNF receptor and the soluble TNF receptor expression.

  • PDF

H9 Induces Apoptosis via the Intrinsic Pathway in Non-Small-Cell Lung Cancer A549 Cells

  • Kwon, Sae-Bom;Kim, Min-Je;Sun Young, Ham;Park, Ga Wan;Choi, Kang-Duk;Jung, Seung Hyun;Do-Young, Yoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.343-352
    • /
    • 2015
  • H9 is an ethanol extract prepared from nine traditional/medicinal herbs. This study was focused on the anticancer effect of H9 in non-small-cell lung cancer cells. The effects of H9 on cell viability, apoptosis, mitochondrial membrane potential (MMP; ${\Delta}\psi_{m}$), and apoptosisrelated protein expression were investigated in A549 human lung cancer cells. In this study, H9-induced apoptosis was confirmed by propidium iodide staining, expression levels of mRNA were determined by reverse transcriptase polymerase chain reaction, protein expression levels were checked by western blot analysis, and MMP (${\Delta}\psi_{m}$) was measured by JC-1 staining. Our results indicated that H9 decreased the viability of A549 cells and induced cell morphological changes in a dose-dependent manner. H9 also altered expression levels of molecules involved in the intrinsic signaling pathway. H9 inhibited Bcl-xL expression, whereas Bax expression was enhanced and cytochrome C was released. Furthermore, H9 treatment led to the activation of caspase-3/caspase-9 and proteolytic cleavage of poly(ADP-ribose) polymerase; the MMP was collapsed by H9. However, the expression levels of extrinsic pathway molecules such as Fas/FasL, TRAIL/TRAIL-R, DR5, and Fas-associated death receptor were downregulated by H9. These results indicated that H9 inhibited proliferation and induced apoptosis by activating intrinsic pathways but not extrinsic pathways in human lung cancer cells. Our results suggest that H9 can be used as an alternative remedy for human non-small-cell lung cancer.

Radix Tetrastigma Hemsleyani Flavone Induces Apoptosis in Human Lung Carcinoma A549 Cells by Modulating the MAPK Pathway

  • Zhong, Liang-Rui;Chen, Xian;Wei, Ke-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.5983-5987
    • /
    • 2013
  • Radix Tetrastigma Hemsleyani Flavone (RTHF) is widely used as a traditional herb for its detoxification and anti-inflammation activity. Recently, several studies have shown that RTHF can inhibit growth and induce apoptosis in human cancer cell lines. However, the mechanisms are not completely understood yet. In this study we investigated the potential effects of RTHF on growth and apoptosis in human lung adenocarcinoma A549 cells as well as its mechanisms. A549 cells were treated with RTHF at various concentrations for different times. In vitro the MTT assay showed that RTHF had obvious anti-proliferation effects on A549 cells in a dose- and time-dependent manner. Cell morphological changes observed by inverted microscope and Hoechst33258 methods were compared with apoptotic changes observed by fluorescence microscope. Cell apoptosis inspected by flow cytometry showed significant increase in the treatment group over the control group (P<0.01). Expression of apoptosis related Bax/Bcl-2, caspases and MAPK pathway proteins were detected by Western blotting. The results showed that RTHF up-regulated the Bax/Bcl-2 ratio and cle-caspase3/9, cle-PARP expression in a dose-dependent manner. Expression of p-p38 increased, p-ERK decreased significantly and that of p-JNK was little changed in the RTHF group when compared with the control group. These results suggest that RTHF might exert anti-growth and apoptosis activity against lung cancer A549 cells through activation of caspases and Bcl-2 family proteins and the MAPK pathway, therefore presenting as a promising therapeutic agent for the treatment of lung cancer.

Effect of Pleurotus ferulae Extracts on Viability of Human Lung Cancer and Cervical Cancer Cell Lines

  • Choi DuBok;Cha Wol-Suk;Kang Si-Hyung;Lee Byoung-Rai
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.5
    • /
    • pp.356-361
    • /
    • 2004
  • When SiHa cells were incubated for varying periods of time with extracts of PFF and PFM, the cytotoxicity of the ethanol extracts of PFF was higher than those of the other extracts. These results indicated that the extracts from fruiting bodies of p. ferulae contain antitumor Substances. When A549, SiHa and HeLa cells were incubated with different concentrations of PFF and PFM extracts, the ethanol extracts of PFF showed strong cytotoxicity against A549 tells at concentrations over $10{\mu}g/mL$ and against SiHa and HeLa cells at concentrations over $40{\mu}g/mL$. However, the differences in the cytotoxic effects of the hot water and ethanol extracts of PFM and the hot water extracts of PFF on all 3 cancer cells were not significant. Also, the PFF ethanol extracts induced synergistic effects on the TRAIL-induced apoptosis in A549 cells, which were strongly resistant to TRAIL. These results indicated that ethanol extracts of PFF were the most prominent antitumor agents toward lung cancer cells (A549).

The Role of Autophagy in Apoptosis Induced by Water Extract of Platycodonis Radix in H460 Human Lung Cancer Cells (H460 인체 폐암세포에서 길경 물 추출물에 의해 유도된 세포사멸에서 자가포식의 역할)

  • Hong, Su Hyun;Choi, Yung Hyun
    • Herbal Formula Science
    • /
    • v.29 no.4
    • /
    • pp.155-165
    • /
    • 2021
  • Objectives : Recent studies have suggested that Platycodonis Radix has various pharmacological effects such as anti-cancer, antioxidant, anti-asthma, anti-diabetes, anti-obesity, hepatoprotective, and cardiovascular protection effects. The aim of this study was to investigate the role of water extract of Platycodonis Radix (WPR)-induced autophagy in H460 human lung cancer cells. Methods : H460 cells were treated with WPR and cell viability was calculated by an MTT assay. To evaluate changes in apoptosis- and autophagy-related genes, Western blotting was performed. Two kinds of autophagy inhibitors, 3-Methyladenine (3-MA) and bafilomycin A1, were pretreated to confirm the role of WPR-induced autophagy. Results : WPR reduced the viability of H460 cells in a treatment concentration-dependent manner, which was associated with induction of apoptosis. It was also confirmed that WPR induced autophagy based on the formation of specific intracellular vacuoles and changes in the expression of autophagy-related genes. Interestingly, pretreatment with 3-MA and bafilomycin A1 increased WPR-induced cytotoxicity and apoptosis. Conclusions : WPR induced autophagy at low concentrations and early stages of treatment, but promoted apoptosis at high concentrations and late stages. Moreover, WPR-induced autophagy had a cytoprotective role in H460 cells.

Crataegus pinnatifida Bunge root extract induces apoptosis of murine lung carcinoma cells in vitro

  • Minjeong Kwon;Jongbeom Chae;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.299-304
    • /
    • 2023
  • This study sought to evaluate the anticancer effects of Crataegus pinnatifida Bunge root extract (CPE) on murine Lewis lung carcinoma cells (LLC1) in vitro. CPE treatment (2.5, 5, 10 ㎍/mL, 24 h) of LLC cells led to a dose-dependent decrease in cell viability, while CPE treatment did not have a cytotoxic effect on non-cancer cells (NIH/3T3). CPE affects LLC by flipping the plasma membrane and making the membrane more permeable; by flow cytometry, CPE-induced annexin V and propidium iodide positivity, indicating induction of apoptosis in LLC cells. In addition, CPE enhanced the expression of apoptotic proteins caspase-3 and poly (ADP-ribose) polymerase 1 (PARP-1). CPE upregulated the proapoptotic protein BCL-2-associated X while downregulating the anti-apoptotic protein B-cell lymphoma 2 (BCL-2), suggesting that CPE induces apoptosis via the mitochondrial pathway. Furthermore, CPE upregulated the phosphorylation of the mitogen activated protein kinase p38. In conclusion, the results suggest that CPE has an anticancer effect in LLC cells by inducing apoptosis via p38.

Induction of Apoptosis in Arsenic Trioxide-treated Lung Cancer A549 Cells by Buthionine Sulfoximine

  • Han, Yong Hwan;Kim, Sung Zoo;Kim, Suhn Hee;Park, Woo Hyun
    • Molecules and Cells
    • /
    • v.26 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Arsenic trioxide (ATO) affects many biological processes such as cell proliferation, apoptosis, differentiation and angiogenesis. L-buthionine sulfoximine (BSO) is an inhibitor of GSH synthesis. We tested whether ATO reduced the viability of lung cancer A549 cells in vitro, and investigated the in vitro effect of the combination of ATO and BSO on cell viability in relation to apoptosis and the cell cycle. ATO caused a dose-dependant decrease of viability of A549 cells with an $IC_{50}$ of more than $50{\mu}m$. Low doses of ATO or BSO ($1{\sim}10{\mu}m$) alone did not induce cell death. However, combined treatment depleted GSH content and induced apoptosis, loss of mitochondrial transmembrane potential (${\Delta}{\Psi}_m$) and cell cycle arrest in G2. Reactive oxygen species (ROS) increased or decreased depending on the concentration of ATO. In addition, BSO generally increased ROS in ATO-treated A549 cells. ROS levels were at least in part related to apoptosis in cells treated with ATO and/or BSO. In conclusion, we have demonstrated that A549 lung cells are very resistant to ATO, and that BSO synergizes with clinically achievable concentration of ATO. Our results suggest that combination treatment with ATO and BSO may be useful for treating lung cancer.

Expression Analyses Revealed Thymic Stromal Co-Transporter/Slc46A2 Is in Stem Cell Populations and Is a Putative Tumor Suppressor

  • Kim, Ki Yeon;Lee, Gwanghee;Yoon, Minsang;Cho, Eun Hye;Park, Chan-Sik;Kim, Moon Gyo
    • Molecules and Cells
    • /
    • v.38 no.6
    • /
    • pp.548-561
    • /
    • 2015
  • By combining conventional single cell analysis with flow cytometry and public database searches with bioinformatics tools, we extended the expression profiling of thymic stromal cotransporter (TSCOT), Slc46A2/Ly110, that was shown to be expressed in bipotent precursor and cortical thymic epithelial cells. Genome scale analysis verified TSCOT expression in thymic tissue- and cell type- specific fashion and is also expressed in some other epithelial tissues including skin and lung. Coexpression profiling with genes, Foxn1 and Hoxa3, revealed the role of TSCOT during the organogenesis. TSCOT expression was detected in all thymic epithelial cells (TECs), but not in the $CD31^+$endothelial cell lineage in fetal thymus. In addition, ABC transporter-dependent side population and Sca-$1^+$ fetal TEC populations both contain TSCOT-expressing cells, indicating TEC stem cells express TSCOT. TSCOT expression was identified as early as in differentiating embryonic stem cells. TSCOT expression is not under the control of Foxn1 since TSCOT is present in the thymic rudiment of nude mice. By searching variations in the expression levels, TSCOT is positively associated with Grhl3 and Irf6. Cytokines such as IL1b, IL22 and IL24 are the potential regulators of the TSCOT expression. Surprisingly, we found TSCOT expression in the lung is diminished in lung cancers, suggesting TSCOT may be involved in the suppression of lung tumor development. Based on these results, a model for TEC differentiation from the stem cells was proposed in context of multiple epithelial organ formation.