• Title/Summary/Keyword: Lunar surface

Search Result 82, Processing Time 0.035 seconds

Distributions of Mean Particle Size and Age on the Lunar Surface

  • Jung, Min-Sup;Kim, Sung-Soo S.;Min, Kyoung-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.103.2-103.2
    • /
    • 2011
  • We measure the degree of polarization of the lunar regolith to map the distributions of the age and the particle size. We use a 12cm refracting telescope with a 2k-square pixel color CCD (R band) and a polarization filter. The angular resolution obtained is 3.02 km/pixel. Our goal is to obtain a map of the lunar particle size distribution on the lunar regolith and then that of the age distribution. Polarization of the light scattered by lunar surface contains information on their mean particle size. The mean particle size of the lunar surface has been decreased by continued micro-meteoroid impact over a long period. One can estimate the age of the lunar surface if the mean particle size is known. Particle sizes can be measured through observations of polarization because the mean particle size is related to the maximum polarization and albedo. The age and the particle size of the lunar regolith can give vital information for the future lunar exploration.

  • PDF

Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data (Kaguya Lunar Radar Sounder (LRS) 표면 레인지 데이터를 이용한 Rima Galilaei의 북쪽 달 용암 동굴 후보지 조사)

  • Sun, Changwan;Takao, Kobayashi;Kim, Kyeong Ja;Choi, Young-Jun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.313-324
    • /
    • 2017
  • A lava tube is one of the hot issues of lunar science because it is regarded as a good candidate place for setting a lunar base. Recently much effort has been made to find lunar lava tubes. However, preceding works mainly made use of high-resolution lunar surface image data in conjunction with geomorphological consideration to present some lava tube candidates. Yet, those candidates stay no more than indirect indications. We propose a new data analysis technique of High Frequency (HF) radar observation data to find lunar lava tubes of which location depth is smaller than the range resolution of the radar pulse. Such shallow target echoes cannot be resolved from surface echoes, which presents the different location of the lunar surface compared to that of real lunar surface. The proposed technique instead finds the surface range (distance from LRS to the reflector of the most intense signal) anomaly which occurs as a result of the low range resolution of LRS pulse. We applied this technique to the surface range of Kaguya Lunar Radar Sounder (LRS) data. The surface range was deduced to make LRS surface elevation which was compared with the average surface elevation of Kaguya Digital Terrain Model (DTM). An anomalous discrepancy of the surface elevation was found in the Rima Galilaei area, which suggests the existence of a shallow lava tube.

GEOLOGICAL AGE AND THICKNESS ESTIMATION OF LAVA AT MARE CRISIUM BY LUNAR SURFACE GIS

  • Kazama, Yoriko;Matsunaga, Tsuneo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.333-336
    • /
    • 2007
  • SELENE, a Japanese lunar mission, has been launched this year. There are large volumes of images that were already archived and will be archived by missions such as SELENE. Automatic image analysis systems, which extract useful information from large amounts of data, are now required. The authors propose Lunar Surface GIS, which archives lunar surface information collected by lunar orbiting spacecraft and conducts geological analysis automatically. This system includes automatic crater detection, automatic age determination, and lava thickness estimation methods. In this paper, methods for automatically determining the age and estimating the lava thickness of lunar mare are described. The lunar surface age was determined by analyzing data of detected crater size and number using a crater chronology method. Lava thickness was estimated by the extent of the overlying material around the crater as well as the composition of underlying terrain units. In this result, the age map at Mare Crisium suggests the mare had been formed 3.0-3.7 b.y. ago. The lava thickness result suggests the thickest part of the mare is distributed around the center of the mare. The Lunar Surface GIS can produce a geological map, age map, and mare lava thickness map, for example.

  • PDF

Korea Pathfinder Lunar Orbiter Magnetometer Instrument and Initial Data Processing

  • Wooin Jo;Ho Jin;Hyeonhu Park;Yunho Jang;Seongwhan Lee;Khan-Hyuk Kim;Ian Garrick-Bethell;Jehyuck Shin;Seul-Min Baek;Junhyun Lee;Derac Son;Eunhyeuk Kim
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.199-215
    • /
    • 2023
  • The Korea Pathfinder Lunar Orbiter (KPLO), the first South Korea lunar exploration probe, successfully arrived at the Moon on December, 2022 (UTC), following a 4.5-month ballistic lunar transfer (BLT) trajectory. Since the launch (4 August, 2022), the KPLO magnetometer (KMAG) has carried out various observations during the trans-lunar cruise phase and a 100 km altitude lunar polar orbit. KMAG consists of three fluxgate magnetometers capable of measuring magnetic fields within a ± 1,000 nT range with a resolution of 0.2 nT. The sampling rate is 10 Hz. During the originally planned lifetime of one year, KMAG has been operating successfully while performing observations of lunar crustal magnetic fields, magnetic fields induced in the lunar interior, and various solar wind events. The calibration and offset processes were performed during the TLC phase. In addition, reliabilities of the KMAG lunar magnetic field observations have been verified by comparing them with the surface vector mapping (SVM) data. If the KPLO's mission orbit during the extended mission phase is close enough to the lunar surface, KMAG will contribute to updating the lunar surface magnetic field map and will provide insights into the lunar interior structure and lunar space environment.

A Study on Lunar Soil Simulant Pretreatment for Effective Simulation of Lunar Surface Environment (달 지상 환경의 효과적 모사를 위한 인공월면토 전처리에 관한 연구)

  • Chung, Taeil;Kim, Young-Jae;Ryu, Byung-Hyun;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.51-58
    • /
    • 2020
  • As interest in lunar exploration increases, studies on lunar surface environment simulation including a lunar soil simulant are being conducted. One of the problems when creating a vacuum environment with lunar soil is that it takes long time to reach high vacuum due to outgas from the soil. Most of the outgas is water, and the time to reach high vacuum can be significantly reduced by a pretreatment process that removes moisture adhering to the surface of the lunar soil before putting soil into a vacuum chamber. The existing soil drying methods were examined to determine how these methods were effective to remove moisture from the lunar simulant soil. Drying experiments of lunar soil samples were carried out using a dry oven, a microwave oven, direct heating method and a vacuum oven, and the results of the drying experiment were presented. Drying soil at 110℃ using a dry oven and drying soil by a microwave oven were not enough to remove moisture, and vacuum oven drying method and direct heating drying method at more than 200℃ were effective in water removal.

Multi-Band Polarimetric Observations of the Lunar Surface

  • Jung, Minsup;Kim, Sungsoo S.;Min, Kyoung Wook;Jin, Ho;Garrick-Bethell, Ian;Morris, Mark
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.93.2-93.2
    • /
    • 2013
  • Polarization of the light scattered by the lunar surface contains information on the mean particle size of the lunar regolith, which gradually decreases by continued micro-meteoroid impact over a long period and thus is an age indicator of the surface. We performed multi-band (U, B, V, R and I) polarimetric observations toward the whole near side of the Moon at the Lick observatory using a 15-cm reflecting telescope with 1.1km/pixel spatial resolution at the center of the lunar disk. We analyze the color dependence of the polarization properties of the lunar regolith and discuss its implication for the study of lunar swirls.

  • PDF

System Requirement Review of Lunar Surface magnetometer on the CLPS program

  • Jin, Ho;Kim, Khan-Hyuk;Lee, Seongwhan;Lee, Hyojeong;Seon, Daerac;Jung, Byungwook;Jang, Yunho;Park, Hyeonhu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.40.1-40.1
    • /
    • 2020
  • The Korea Astronomy and Space Science Institute is participating as a South Korean partner in the Commercial Lunar Payload Services (CLPS)of NASA. In response, the Korea Astronomy and Space Science Institute is currently conducting basic research for the development of four candidate instrument payloads. The magnetic field instrument is one of them and it's scientific mission objective is the moon's surface magnetic field investigation. Therefore, the development requirement of the lunar surface magnetic field instrument were derived and the initial conceptual design was started. The magnetic field instrument has a 1.2 meter boom which has two three-axis fluxgate magnetometer sensors and one gyro sensor to get a attitude information of the boom. The concept of measuring the lunar surface magnetic field will carry out using multiple sensors by placing semiconductor type magnetic field sensors inside the electric box including boom mounted fluxgate sensors. In order to overcome the very short development period, we will use the KPLO (Korean Lunar Pathfinder Orbiter) magnetometer design and parts to improve reliabilities for this instrument. In this presentation, we introduce the instrument requirements and conceptual design for the Lunar surface magnetic field instruments.

  • PDF

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.

Simulations of the Lunar Exosphere: Initial Conditions of atomic species near the Surface of the Moon

  • Kim, Sang Joon;Lee, Dong Wook;Park, Jae Kyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.57.4-58
    • /
    • 2018
  • It is interesting to find the best exospheric model that can account for the observed characteristics of the lunar coma and tail simultaneously. Recently, the initial abundances of atomic species near surface are found to be different depending on certain local areas. We will present the influence of different initial conditions of localized sources on the characteristics of the lunar exosphere, and also present time-dependent simulations showing the distributions of atomic species around the lunar coma and the final stage of the lunar tail. Based on our updated 3-D lunar model, we will present resulted physical parameters of the lunar sodium coma and tail.

  • PDF

An Experimental Study on Air Evacuation from Lunar Soil Mass and Lunar Dust Behavior for Lunar Surface Environment Simulation (달 지상환경 모사를 위한 지반 진공화 및 달먼지 거동에 대한 실험적 연구)

  • Chung, Taeil;Ahn, Hosang;Yoo, Yongho;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.327-333
    • /
    • 2019
  • For sustainable lunar exploration, the most required resources should be procured on site because it takes tremendous cost to transfer the resources from the Earth to the Moon. The technologies required for use of lunar resources refers to In-Situ Resource Utilization (ISRU). As the ISRU technology cannot be verified in the Earth, a lunar surface environment simulator is necessary to be prepared in advance. The Moon has no atmosphere, and the average temperature of the lunar surface reaches to $107^{\circ}C$ during the daytime and $-153^{\circ}C$ at night. The lunar surface is also covered with very fine soils with sharp particles that are electrostatically charged by solar radiation and solar wind. In this research, generation of vacuum environment with lunar soil mass in a chamber and simulation of electrostatically charged soils are taken into consideration. It was successful to make a vacuum environment of a chamber including lunar soils without soil disturbance by controlling evacuation rate of a vacuum chamber. And an experiment procedure for simulating the charged lunar soil was suggested by theoretical consideration in charging phenomena on lunar dust.