DOI QR코드

DOI QR Code

Korea Pathfinder Lunar Orbiter Magnetometer Instrument and Initial Data Processing

  • Received : 2023.11.02
  • Accepted : 2023.11.13
  • Published : 2023.12.15

Abstract

The Korea Pathfinder Lunar Orbiter (KPLO), the first South Korea lunar exploration probe, successfully arrived at the Moon on December, 2022 (UTC), following a 4.5-month ballistic lunar transfer (BLT) trajectory. Since the launch (4 August, 2022), the KPLO magnetometer (KMAG) has carried out various observations during the trans-lunar cruise phase and a 100 km altitude lunar polar orbit. KMAG consists of three fluxgate magnetometers capable of measuring magnetic fields within a ± 1,000 nT range with a resolution of 0.2 nT. The sampling rate is 10 Hz. During the originally planned lifetime of one year, KMAG has been operating successfully while performing observations of lunar crustal magnetic fields, magnetic fields induced in the lunar interior, and various solar wind events. The calibration and offset processes were performed during the TLC phase. In addition, reliabilities of the KMAG lunar magnetic field observations have been verified by comparing them with the surface vector mapping (SVM) data. If the KPLO's mission orbit during the extended mission phase is close enough to the lunar surface, KMAG will contribute to updating the lunar surface magnetic field map and will provide insights into the lunar interior structure and lunar space environment.

Keywords

Acknowledgement

This work was supported by (NRF-2020M1A3B7109194) and by the KPLO payload instrument operation program (KASI). The authors wish to thank all of the KPLO team members for their help in the observation. Magnetic field data from NOAA's DSCOVR spacecraft used as a space weather reference were produced by CDAWeb/NASA. ARTEMIS P1 FGM data was supported by NASA contract NAS5-0299. We acknowledge K. H. Glassmeier, U. Auster, and W. Baumjohann for the use of FGM data provided under the lead of the Technical University of Braunschweig and with financial support through the German Ministry for Economy and Technology and the German Center for Aviation and Space (DLR) under contract 50 OC 0302. IGB acknowledges support from the NASA KPLO Participating Scientist Program. The magnetic field of surface vector mapping (SVM) data are available at http://www.geo.titech.ac.jp/lab/tsunakawa/Kaguya_LMAG.dir/.

References

  1. Auster HU, Glassmeier KH, Magnes W, Aydogar O, Baumjohann W, et al., The THEMIS fluxgate magnetometer, Space Sci. Rev. 141, 235-264 (2008). https://doi.org/10.1007/s11214-008-9365-9
  2. Baek SM, Kim KH, Garrick-Bethell I, Jin H, Lee HJ, et al., Detailed study of the Mare Crisium northern magnetic anomaly, J. Geophys. Res. Planets 122, 411-430 (2017). https://doi.org/10.1002/2016je005138
  3. Belcher JW, A variation of the Davis-Smith method for in-flight determination of spacecraft magnetic fields, J. Geophys. Res. 78, 6480-6490 (1973). https://doi.org/10.1029/JA078i028p06480
  4. Belcher JW, Davis L Jr, Large-amplitude Alfven waves in the interplanetary medium, 2, J. Geophys. Res. 76, 3534-3563 (1971). https://doi.org/https://doi.org/10.1029/JA076i016p03534
  5. Binder AB, Lunar Prospector: overview, Science 281, 1475-1476 (1998). https://doi.org/10.1126/science.281.5382.1475
  6. Davis L Jr, Smith EJ, The in-flight determination of spacecraft magnetic field zeros, Eos Trans. Am Geophys. Union 49, 257 (1968).
  7. Dyal P, Parkin CW, The Apollo 12 magnetometer experiment: internal lunar properties from transient and steady magnetic field measurements, Proceedings of the 2nd Lunar Science Conference, Houston, TX, USA, 11-14 Jan 1971.
  8. Dyal P, Parkin CW, Daily WD, Structure of the lunar interior from magnetic field measurements, Proceedings of the 7th Lunar Science Conference, Houston, TX, USA 15-19 Mar 1976.
  9. Fairfield DH, Average and unusual locations of the Earth's magnetopause and bow shock, J. Geophys. Res. 76, 6700-6716 (1971). https://doi.org/10.1029/JA076i028p06700
  10. Farrell WM, Thompson RF, Lepping RP, Byrnes JB, A method of calibrating magnetometers on a spinning spacecraft, IEEE Trans. Magn. 31, 966-972 (1995). https://doi.org/10.1109/20.364770
  11. Garrick-Bethell I, Kelley MR, Reiner gamma: a magnetized elliptical disk on the Moon, Geophys. Res. Lett. 46, 5065-5074 (2019). https://doi.org/10.1029/2019gl082427
  12. Haviland HF, Poppe AR, Fatemi S, Delory GT, de Pater I, Time-dependent hybrid plasma simulations of lunar electromagnetic induction in the solar wind, Geophys. Res. Lett. 46, 4151-4160 (2019). https://doi.org/10.1029/2018gl080523
  13. Hood LL, Coleman PJ Jr, Wilhelms DE, The Moon: sources of the crustal magnetic anomalies, Science 204, 53-57 (1979). https://doi.org/10.1126/science.204.4388.53
  14. Hood LL, Mitchell DL, Lin RP, Acuna MH, Binder AB, Initial measurements of the lunar induced magnetic dipole moment using Lunar Prospector magnetometer data, Geophys. Res. Lett. 26, 2327-2330 (1999). https://doi.org/10.1029/1999gl900487
  15. Kato M, Sasaki S, Takizawa Y, The Kaguya Project Team, The Kaguya mission overview, Space Sci. Rev. 154, 3-19 (2010). https://doi.org/10.1007/s11214-010-9678-3
  16. Kepko EL, Khurana KK, Kivelson MG, Elphic RC, Russell CT, Accurate determination of magnetic field gradients from four point vector measurements. I. Use of natural constraints on vector data obtained from a single spinning spacecraft, IEEE Trans. Magn. 32, 377-385 (1996). https://doi.org/10.1109/20.486522
  17. Kim JH, Choi YJ, Kim BY, Development of KPLO science data archive for public release, Proceedings of the 3rd Planetary Data Workshop and the Planetary Geologic Mappers Annual Meeting, Flagstaff, AZ, USA, 12-15 Jun 2017.
  18. Lee H, Jin H, Jeong B, Lee S, Lee S, et al., KMAG: KPLO magnetometer payload, Publ. Astron. Soc. Pac. 133, 034506 (2021). https://doi.org/10.1088/1538-3873/abe55c
  19. Leinweber HK, Russell CT, Torkar K, Zhang TL, Angelopoulos V, An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field, Meas. Sci. Technol. 19, 055104 (2008). https://doi.org/10.1088/0957-0233/19/5/055104
  20. Maggiolo R, Hamrin M, De Keyser J, Pitkanen T, Cessateur G, et al., The delayed time response of geomagnetic activity to the solar wind, J. Geophys. Res. Space Phys. 122, 11109-11127 (2017). https://doi.org/10.1002/2016ja023793
  21. Magnes W, Hillenmaier O, Auster HU, Brown P, Kraft S, et al., Space weather magnetometer aboard GEO-KOMPSAT2A, Space Sci. Rev. 216, 119 (2020). https://doi.org/10.1007/s11214-020-00742-2
  22. Ness NF, Scearce CS, Seek JB, Initial results of the Imp 1 magnetic field experiment, J. Geophys. Res. 69, 3531-3569 (1964). https://doi.org/10.1029/JZ069i017p03531
  23. Park HH, Jin H, Kim TY, Kim KH, Lee HJ, et al., Analysis of the KPLO magnetic cleanliness for the KMAG instrument, Adv. Space Res. 69, 1198-1204 (2022). https://doi.org/10.1016/j.asr.2021.11.015
  24. Richmond NC, Hood LL, A preliminary global map of the vector lunar crustal magnetic field based on Lunar Prospector magnetometer data, J. Geophys. Res. Planets 113, E02010 (2008). https://doi.org/10.1029/2007je002933
  25. Russell CT, Coleman PJ Jr, Goldstein BE, Measurements of the lunar induced magnetic moment in the geomagnetic tail: evidence for a lunar core?, Proceedings of the 31st Lunar and Planetary Science Conference, Houston, TX, USA, 16-20 Mar 1981.
  26. Shue JH, Song P, Russell CT, Steinberg JT, Chao JK, et al., Magnetopause location under extreme solar wind conditions, J. Geophys. Res. Space Phys. 103, 17691-17700 (1998). https://doi.org/10.1029/98ja01103
  27. Son DR, Construction of feed-back type flux-gate magnetometer, J. Korean Magn. Soc. 22, 45-48 (2012). https://doi.org/10.4283/jkms.2012.22.2.045
  28. Song YJ, Bae J, Hong S, Bang J, Pohlkamp KM, et al., KARI and NASA JSC collaborative endeavors for joint Korea Pathfinder Lunar Orbiter flight dynamics operations: architecture, challenges, successes, and lessons learned, Aerospace 10, 664 (2023). https://doi.org/10.3390/aerospace10080664
  29. Song YJ, Kim YR, Bae J, Park J, Hong S, et al., Overview of the flight dynamics subsystem for Korea Pathfinder Lunar Orbiter mission, Aerospace 8, 222 (2021). https://doi.org/10.3390/aerospace8080222
  30. Takahashi F, Shimizu H, Matsushima M, Shibuya H, Matsuoka A, et al., In-orbit calibration of the lunar magnetometer onboard SELENE (KAGUYA), Earth Planets Space 61, 1269-1274 (2009). https://doi.org/10.1186/Bf03352979
  31. Tsunakawa H, Shibuya H, Takahashi F, Shimizu H, Matsushima M, et al., Lunar magnetic field observation and initial global mapping of lunar magnetic anomalies by MAP-LMAG onboard SELENE (Kaguya), Space Sci. Rev. 154, 219-251 (2010). https://doi.org/10.1007/s11214-010-9652-0