• Title/Summary/Keyword: Lunar rover

Search Result 23, Processing Time 0.025 seconds

Space Planet Exploration Rover Climbing Test Site Design (우주 행성 탐사 로버 등판 시험장 설계)

  • Byung-Hyun Ryu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.1-8
    • /
    • 2023
  • Space exploration is at the forefront of human scientific endeavors, and planetary exploration rovers play a critical role in studying planetary surfaces. Rover performance is especially vital for safely navigating steep terrain and delicate landscapes found on planets like Mars and the Moon. This paper offers a comprehensive overview of a landing testbed designed to simulate challenging extraterrestrial terrain and loose regolith. The paper briefly outlines lunar crater region topographical features and highlights the importance of these simulations in rover testing. It then explores previous landing testbed developments and describes the design process for a landing testbed to be installed in the dirty thermal vacuum chamber at the Korea Institute of Civil Engineering and Building Technology. Once realized, this proposed landing testbed will enable precise evaluations of rover mobility and exploration capabilities under lunar-like conditions, including high vacuum and extreme temperatures.

Study on Net Assessment of Trustworthy Evidence in Teleoperation System for Interplanetary Transportation

  • Wen, Jinjie;Zhao, Zhengxu;Zhong, Qian
    • Journal of Information Processing Systems
    • /
    • v.15 no.6
    • /
    • pp.1472-1488
    • /
    • 2019
  • Critical elements in the China's Lunar Exploration reside in that the lunar rover travels over the surrounding undetermined environment and it conducts scientific exploration under the ground control via teleoperation system. Such an interplanetary transportation mission teleoperation system belongs to the ground application system in deep space mission, which performs terrain reconstruction, visual positioning, path planning, and rover motion control by receiving telemetry data. It plays a vital role in the whole lunar exploration operation and its so-called trustworthy evidence must be assessed before and during its implementation. Taking ISO standards and China's national military standards as trustworthy evidence source, the net assessment model and net assessment method of teleoperation system are established in this paper. The multi-dimensional net assessment model covering the life cycle of software is defined by extracting the trustworthy evidences from trustworthy evidence source. The qualitative decisions are converted to quantitative weights through the net assessment method (NAM) combined with fuzzy analytic hierarchy process (FAHP) and entropy weight method (EWM) to determine the weight of the evidence elements in the net assessment model. The paper employs the teleoperation system for interplanetary transportation as a case study. The experimental result drawn shows the validity and rationality of net assessment model and method. In the final part of this paper, the untrustworthy elements of the teleoperation system are discovered and an improvement scheme is established upon the "net result". The work completed in this paper has been applied in the development of the teleoperation system of China's Chang'e-3 (CE-3) "Jade Rabbit-1" and Chang'e-4 (CE-4) "Jade Rabbit-2" rover successfully. Besides, it will be implemented in China's Chang'e-5 (CE-5) mission in 2019. What's more, it will be promoted in the Mars exploration mission in 2020. Therefore it is valuable to the development process improvement of aerospace information system.

Experimental Analysis of Lunar Rover Wheel's Mobility Performance Depending on Soil Condition and Wheel Configuration (지반 조건 및 휠 형상에 따른 달탐사 로버 휠 주행 성능 평가 실험 연구)

  • Wang, Cheng-Can;Kim, Seok-Jung;Han, Jin-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.693-703
    • /
    • 2017
  • Rover wheel's mobility depends on soil's condition and wheel's design. The purpose of this study is to evaluate the effect of soil conditions, which are Jumunjin sand and Korean lunar soil simulant (KLS-1), on wheel's motion performance. The experiments were performed by using a single wheel testbed with a wheel which grouser height is 15mm on Jumunjin sand and KLS-1, respectively. Also the influence of grouser length to wheel's mobility performance was studied. The experimental results of torque, drawbar pull and sinkage relating to slip ratio were discussed and analyzed to evaluate wheel's motion performance. Results showed wheel moving on KLS-1 has high performance than Jumunjin sand. Wheel's mobility performance was influenced by soil's properties of cohesion and frictional angle. In addition, wheel's performance of drawbar pull and Torque increased with the increasing of grouser length.

Development of a New Lunar Regolith Simulant using an Automated Program Framework

  • GyeongRok Kwon;Kyeong Ja Kim;Eungseok Yi
    • Journal of Astronomy and Space Sciences
    • /
    • v.41 no.2
    • /
    • pp.79-85
    • /
    • 2024
  • Nowadays, the trend in lunar exploration missions is shifting from prospecting lunar surface to utilizing in-situ resources and establishing sustainable bridgehead. In the past, experiments were mainly focused on rover maneuvers and equipment operations. But the current shift in trend requires more complex experiments that includes preparations for resource extraction, space construction and even space agriculture. To achieve that, the experiment requires a sophisticated simulation of the lunar environment, but we are not yet prepared for this. Particularly, in the case of lunar regolith simulants, precise physical and chemical composition with a rapid development speed rate that allows different terrains to be simulated is required. However, existing lunar regolith simulants, designed for 20th-century exploration paradigms, are not sufficient to meet the requirements of modern space exploration. In order to prepare for the latest trends in space exploration, it is necessary to innovate the methodology for producing simulants. In this study, the basic framework for lunar regolith simulant development was established to realize this goal. The framework not only has a sample database and a database of potential simulation target compositions, but also has a built-in function to automatically calculate the optimal material mixing ratio through the particle swarm optimization algorithm to reproduce the target simulation, enabling fast and accurate simulant development. Using this framework, we anticipate a more agile response to the evolving needs toward simulants for space exploration.

Baseline Design and Performance Analysis of Laser Altimeter for Korean Lunar Orbiter

  • Lim, Hyung-Chul;Neumann, Gregory A.;Choi, Myeong-Hwan;Yu, Sung-Yeol;Bang, Seong-Cheol;Ka, Neung-Hyun;Park, Jong-Uk;Choi, Man-Soo;Park, Eunseo
    • Journal of Astronomy and Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.211-219
    • /
    • 2016
  • Korea's lunar exploration project includes the launching of an orbiter, a lander (including a rover), and an experimental orbiter (referred to as a lunar pathfinder). Laser altimeters have played an important scientific role in lunar, planetary, and asteroid exploration missions since their first use in 1971 onboard the Apollo 15 mission to the Moon. In this study, a laser altimeter was proposed as a scientific instrument for the Korean lunar orbiter, which will be launched by 2020, to study the global topography of the surface of the Moon and its gravitational field and to support other payloads such as a terrain mapping camera or spectral imager. This study presents the baseline design and performance model for the proposed laser altimeter. Additionally, the study discusses the expected performance based on numerical simulation results. The simulation results indicate that the design of system parameters satisfies performance requirements with respect to detection probability and range error even under unfavorable conditions.

3D Modeling of Lacus Mortis Pit Crater with Presumed Interior Tube Structure

  • Hong, Ik-Seon;Yi, Yu;Yu, Jaehyung;Haruyama, Junichi
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.2
    • /
    • pp.113-120
    • /
    • 2015
  • When humans explore the Moon, lunar caves will be an ideal base to provide a shelter from the hazards of radiation, meteorite impact, and extreme diurnal temperature differences. In order to ascertain the existence of caves on the Moon, it is best to visit the Moon in person. The Google Lunar X Prize(GLXP) competition started recently to attempt lunar exploration missions. Ones of those groups competing, plan to land on a pit of Lacus Mortis and determine the existence of a cave inside this pit. In this pit, there is a ramp from the entrance down to the inside of the pit, which enables a rover to approach the inner region of the pit. In this study, under the assumption of the existence of a cave in this pit, a 3D model was developed based on the optical image data. Since this model simulates the actual terrain, the rendering of the model agrees well with the image data. Furthermore, the 3D printing of this model will enable more rigorous investigations and also could be used to publicize lunar exploration missions with ease.

Development of Korean Lunar Highland Soil Simulant (KIGAM-L1) (한국형 달 고원 모사토(KIGAM-L1) 개발)

  • Tae-Yun Kang;Eojin Kim;Kyeong Ja Kim
    • Journal of Space Technology and Applications
    • /
    • v.4 no.2
    • /
    • pp.121-136
    • /
    • 2024
  • Korea Pathfinder Lunar Orbiter (KPLO), launched in August 2022, is successfully carrying out its mission. Korea's lunar lander and rover programs are expected to proceed in the future. To successfully carry out the mission after the lunar lander has landed on the surface, the performance of the equipment to be mounted should be checked in a laboratory environment similar to the Moon. Scientists and engineers of several countries, including the United States and China, use lunar soil simulant which is developed to resemble lunar soil for simulating the surface of the lunar landing site. Several lunar probe landing sites are being discussed in Korea, and lunar soil simulants such as Korea Hanyang Lunar Simulant-1 (KOHLS-1), Korea Aerospace University Mechanical Lunar Simulants (KAUMLS), and Korea Lunar Simulant-1 (KLS-1), which are similar to the characteristics of lunar mare soil, have been developed. However, those simulants are not useful if the landing site is chosen as a highland area. In this study, we introduce the process of developing KIGAM-L1, a lunar highland soil simulant similar to the chemical composition of the Apollo 16 lunar soil sample and the particle size distribution of lunar soil sample 60500-1, in case the lunar lander lands at highland area.

Analysis of landing site for lander and rover on Moon and Mars

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gihyuk;Sim, Eun-Sup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.105.1-105.1
    • /
    • 2012
  • Moon and Mars have been explored by landers and rovers. Apollo missions landed five times on Lunar surface, and various rovers, including Curiosity landed and explored Mars. The selection of landing site have to be considered engineering and scientific side: the landing site to be available to land stably? the obstacle is not around the rover such as rocks and pothole? the landing site is valuable with scientific? And then landing site have to be the place which is satisfied two objects. We search the information about landing sites of Moon and Mars, and compile the conditions of landing sites. We expect that these data are useful when the landing site of Moon or Mars for Korean mission is selected.

  • PDF

Introduction to Chang'e-3 and Analysis of Estimated Mission Trajectory (창어 3호 개요 및 임무궤적 추정결과 분석)

  • Choi, Su-Jin;Lee, Donghun;Bae, Jonghee;Rew, Dong-Young;Ju, Gwanghyeok;Sim, Eun-Sup
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.11
    • /
    • pp.984-997
    • /
    • 2015
  • Chang'e-3 consisting of a lunar lander and exploration rover was launched on December 1, 2013 aboard a Long March 3B rocket flying from Xichang space launch center. Chang'e-3 was inserted into the lunar orbit after about a 5-day transit to the Moon and landed on the targeted landing site after orbiting around the Moon for 8 days. The successful landing of the Chang'e-3 gives a lot of help to analyze the future needs of the subsystem technologies and to figure out the trajectory from launch to lunar landing as well as operation sequences in the development of Korean lunar exploration is scheduled. Therefore, the configuration and analysis of overall mission of Chang'e-3 is performed based on the public information from the press and website. As a result, overall mission trajectory is reconstructed by solving boundary condition and then estimating control variable. Visibility status and eclipse status also analyzes so communication and power charge condition is as good as to operate lunar lander. Mass budget of the lander is derived using ${\Delta}V$ according to specific impulse.

Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region (달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험)

  • Park, Jae-Min;Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.741-749
    • /
    • 2022
  • Major space agencies are planning for the rover-based lunar exploration since water-ice was detected in permanently shadowed regions (PSR). Although sunlight does not directly reach the PSRs, it is expected that reflected sunlight sustains a certain level of low-light environment. In this research, the indoor testbed was made to simulate the PSR's lighting and topological conditions, to which low light enhancement methods (CLAHE, Dehaze, RetinexNet, GLADNet) were applied to restore image brightness and color as well as to investigate their influences on the performance of feature extraction and matching methods (SIFT, SURF, ORB, AKAZE). The experiment results show that GLADNet and Dehaze images in order significantly improve image brightness and color. However, the performance of the feature extraction and matching methods were improved by Dehaze and GLADNet images in order, especially for ORB and AKAZE. Thus, in the lunar exploration, Dehaze is appropriate for building 3D topographic map whereas GLADNet is adequate for geological investigation.