DOI QR코드

DOI QR Code

Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region

달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험

  • 박재민 (한국건설기술연구원 연구전략기획본부) ;
  • 홍성철 (인하대학교 공간정보공학과) ;
  • 신휴성 (한국건설기술연구원 미래스마트건설연구본부)
  • Received : 2022.03.24
  • Accepted : 2022.06.26
  • Published : 2022.10.01

Abstract

Major space agencies are planning for the rover-based lunar exploration since water-ice was detected in permanently shadowed regions (PSR). Although sunlight does not directly reach the PSRs, it is expected that reflected sunlight sustains a certain level of low-light environment. In this research, the indoor testbed was made to simulate the PSR's lighting and topological conditions, to which low light enhancement methods (CLAHE, Dehaze, RetinexNet, GLADNet) were applied to restore image brightness and color as well as to investigate their influences on the performance of feature extraction and matching methods (SIFT, SURF, ORB, AKAZE). The experiment results show that GLADNet and Dehaze images in order significantly improve image brightness and color. However, the performance of the feature extraction and matching methods were improved by Dehaze and GLADNet images in order, especially for ORB and AKAZE. Thus, in the lunar exploration, Dehaze is appropriate for building 3D topographic map whereas GLADNet is adequate for geological investigation.

달 영구음영지역에 얼음 형태의 물이 발견되면서 주요 우주국들은 로버 중심의 현장 탐사를 준비 중이다. 달 영구음영지역은 극지역 크레이터의 중심부로 태양광이 직접 도달하지 않지만, 크레이터 벽면으로부터 반사되는 태양광으로 인해 일정 수준의 저조도 환경이 유지되는 것으로 예상된다. 본 연구에서는 달 영구음영지역의 조도와 지형환경을 모사한 실내 테스트베드를 구축하여 모의 지형영상을 촬영하였다. 모의 영상을 대상으로 저조도 영상강화 기법(CLAHE, Dehaze, RetinexNet, GLADNet)을 적용하여 밝기값과 색상복원 효과를 분석하였고, 특징점 추출 및 정합 기법(SIFT, SURF, ORB, AKAZE)의 성능 향상을 분석하였다. 실험 결과 GLADNet과 Dehaze 영상 순으로 저조도 환경에 강인한 시인성 개선 효과를 보여주었다. 반면 특징점 검출 및 정합 기법은 Dehaze와 GLADNet 영상 순으로 성능이 향상됨을 확인하였고, 특히 ORB와 AKAZE의 성능이 크게 개선되었다. 달 탐사에서 로버 탑재 카메라는 3차원 지형정보구축과 지질학적 조사에 활용된다. 따라서 GLADNet은 토양 성분과 암석 종류 판별에 유용하고, Dehaze는 로버의 주행과 함께 3차원 지형정보 구축에 적합할 것으로 판단된다.

Keywords

Acknowledgement

본 논문은 한국건설기술연구원 주요사업(극한건설 환경구현 인프라 및 TRL6 이상급 극한건설 핵심기술 개발)과 2022년 한국연구재단 기초연구사업(No.2022R1F1A1064577) 및 인하대학교 지원으로 수행된 연구로 이에 감사합니다.

References

  1. Ahn, M. S. and Lee, Y. G. (2008). "Trend of rover development and mission analysis of lunar exploration rovers." In Proceedings of The Korean Society For Aeronautical And Space Sciences, Korea, pp. 1301-1304 (in Korean).
  2. Alcantarilla, P. F., Nuevo, J. and Bartoli, A. (2013). "Fast explicit diffusion for accelerated features in nonlinear scale spaces." In Proceedings of British Machine Vision Conference, Bristol, United Kingdom, pp. 13.1-13.11
  3. Bay, H., Tuytelaars, T. and Gool, L. V. (2008). "SURF: Speeded up robust features." Computer Vision and Image Understanding, Vol. 110, No. 3, pp. 346-359. https://doi.org/10.1016/j.cviu.2007.09.014
  4. Fong, T. (2021). "Volatiles investigating polar exploration rover." In Proceedings of Australasian Conference on Robotics and Automation, Brisbane, Australasia.
  5. Hong, S. C. and Shin, H. S. (2018). "Trend analysis of lunar exploration missions for lunar base construction." Journal of the Korea Academia-Industrial Cooperation Society, Vol. 19, No. 7, pp. 144-152. DOI: https://doi.org/10.5762/KAIS.2018.19.7.144 (in Korean).
  6. Hong, S. C. and Shin, H. S. (2020). "Comparative performance analysis of feature detection and matching methods for lunar terrain images." Journal of the Korean Society of Civil Engineers, KSCE, Vol. 40, No. 4, pp. 437-444. DOI: https://doi.org/10.12652/Ksce.2020.40.4.0437 (in Korean).
  7. Hong, S. C., Bangunharcana, A., Park, J. M., Choi, M. S. and Shin, H. S. (2021). "Visual SLAM-based robotic mapping method for planetary construction." Sensors, Vol. 21, No. 22, 7715. DOI: https://doi.org/10.3390/s21227715.
  8. Hong, S. C., Chung, T. I., Park, J. M. and Shin, H. S. (2019). "Research on development of construction spatial information technology, using rover's camera system." Journal of the Korea Academia-Industrial cooperation Society, Vol. 20, No. 7, pp. 630-637. DOI: https://doi.org /10.5762/KAIS.2019.20.7.630 (in Korean).
  9. Hong, S. C., Shyam, P., Bangunharcana, A. and Shin, H. S. (2022). "Robotic mapping approach under illumination-variant environments at planetary construction sites." Remote Sensing, Vol. 14, No. 4, 1027. DOI: https://doi.org/10.3390/rs14041027.
  10. International Space Exploration Coordination Group (ISECG) (2020). Global exploration roadmap supplement - Lunar surface exploration scenario update, Available at: https://www.globalspaceexploration.org/?p=1049 (Accessed: February 21, 2022).
  11. Jamal, H., Gupta, V., Khera, N., Vijayarangan, S., Wettergreen, D. and Red, W. L. (2020). "Terrain mapping and pose estimation for polar shadowed regions of the moon." In International Symposium of Artificial Intelligence, Robotics and Automation in Space, Pasadena, USA, pp. 5030.
  12. Ju, G. H. (2018). "development status of domestic & overseas space exploration & associated technology." Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 8, pp. 741-757. DOI: https://doi.org/10.5139/JKSAS.2016.44.8.741 (in Korean).
  13. Kim, K. J. (2017). "A research trend on lunar resource and lunar base." The Journal of the Petrological Society of Korea, Vol. 26, No. 4, pp. 373-384. DOI: https://doi.org/10.7854/JPSK.2017.26.4.373 (in Korean).
  14. Lee, H. S., Park, J. M., Hong, S. C. and Shin, H. S. (2020). "Low light image enhancement to construct terrain information from permanently shadowed region on the moon." Journal of the Korean Society for Geospatial Information Science, Vol. 28, No. 4, pp. 41-48. DOI: http://dx.doi.org/10.7319/kogsis.2020.28.4.041 (in Korean).
  15. Lowe, D. (2004). "Distinctive image features from scale invariant keypoints." International Journal of Computer Vision, Vol. 60, No. 2, pp. 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94
  16. Lucey, P. G., Hayne, P. O., Costello, E. S., Green, R., Hibbitts, C. A., Goldberg, A., Mazarico, E., Li, S. and Honniball, C. (2021). "The spectral radiance of indirectly illuminated surfaces in regions of permanent shadow on the moon." Acta Astronautica, Vol. 180, pp. 25-34. DOI: https://doi.org/10.1016/j.actaastro.2020.11.032.
  17. Mazarico, E., Neumann, G. A., Smith, D. E., Zuber, M. T. and Torrence, M. H. (2011). "Illumination conditions of the lunar polar regions using LOLA topography." Icarus, Vol. 211, No. 2, pp. 1066-1081. https://doi.org/10.1016/j.icarus.2010.10.030
  18. Muja, M. and Lowe, D. G. (2009). "Flann, fast library for approximate nearest neighbors." In Proceedings in International Conference on Computer Vision Theory and Applications, Lisboa, Portugal, pp. 331-340.
  19. National Aeronautics and Space Administration (NASA) (2017). The dark side of crater: How light looks different on the Moon and what NASA is doing about it, Available at: https://www.nasa.gov/ames/feature/the-dark-side-of-the-crater-how-light-looks-different-on-the-moon-and-what-nasa-is-doing (Accessed: June 8, 2022).
  20. National Aeronautics and Space Administration (NASA) (2020). Artemis plan: NASA's lunar exploration program overview, Available at: https://www.nasa.gov/sites/default/files/atoms/files/artemis_plan20200921.pdf (Accessed: February 3, 2022).
  21. Park, D. B., Park, H. J., Han, D. K. and Ko, H. S. (2014). "Single image dehazing with image entropy and information fidelity." IEEE International Conference on Image Processing, Paris, France, pp. 4037-4041.
  22. Pedersen, L., Han, C. S. and Vitus, M. (2008). "Dark navigation: Sensing and rover navigation in permanently shadowed lunar craters." In International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), Los Angeles, USA, pp. 1-8.
  23. Pizer, S. M., Johnston, R. E., Ericksen, J. P., Yankaskas, B. C. and Muller, K. E. (1990). "Contrast-limited adaptive histogram equalization: speed and effectiveness." Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, USA, pp. 337-338.
  24. Rublee, E., Rabaud, V., Konolige, K. and Bradski, G. (2011). "ORB: An efficient alternative to SIFT or SURF." Proceedings of International Conference on Computer Vision, Barcelona, Spain, pp. 2564-2571.
  25. Ryu, B. H., Wang, C. C. and Chang, I. H. (2018). "Development and geotechnical engineering properties of KLS-1 lunar simulant." Journal of Aerospace Engineering, Vol. 31, No. 1, pp. 04017083. DOI: 10.1061/(ASCE)AS.1943-5525.0000798.
  26. Wang, W., Wei, C., Yang, W. and Liu, J. (2018). "Gladnet: Low-light enhancement network with global awareness." In Proceedings of 13th IEEE International Conference on Automatic Face & Gesture Recognition, Xian, Chian, pp. 751-755.
  27. Wang, Z., Simoncelli, E. P. and Bovik, A. C. (2003) "Multiscale structural similarity for image quality assessment." Proceedings of the 37th Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, pp. 1398-1402.
  28. Wei, C., Wang, W., Yang, W. and Liu, J. (2018). "Deep retinex decomposition for low-light enhancement." arXiv preprint, arXiv:1808.04560.
  29. Wu, B., Li, F., Hu, H., Zhao, Y., Wang, Y., Xiao, P., Li, Y., Liu, W. C., Chen, L., Ge, X. and Yang, M. (2020). "Topographic and geomorphological mapping and analysis of the Chang' E-4 landing site on the far side of the Moon." Photogrammetric Engineering & Remote Sensing, Vol. 86, No. 4, pp. 247-258. DOI: https://doi.org/10.14358/PERS.86.4.247.
  30. Zhang, X., Silverstein, D. A., Farrell, J. E. and Wandell, B. A. (1997). "Color image quality metric S-CIELAB and its application on halftone texture visibility." Proceedings of IEEE COMPCON. San Jose, USA, pp. 44-48.