• Title/Summary/Keyword: Luminous properties

Search Result 161, Processing Time 0.034 seconds

Characteristics of lightning impulse pre-breakdown discharge in $SF_6\;and\;SF_6/CO_2$ mixtures ($SF_6$$SF_6/CO_2$ 혼합기체 중에서의 뇌임펄스 전구방전의 특성)

  • Lee, Bok-Hee;Oh, Sung-Kyun;Baek, Young-Hwan
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.57-60
    • /
    • 2005
  • This paper describes the experimental results of the pre-breakdown phenomena in $SF_6/CO_2$ mixtures under non-uniform electric fields caused by positive and negative lightning negative voltages. $SF_6/CO_2$ mixtures have an advantage of an environmental aspect and cost reduction, and safety aspects. In order to analyze the pre-breakdown processes in $SF_6/CO_2$ mixtures stressed by impulse voltages, pre-breakdown current and luminous signals were measured by a shunt and a photo-multiplier tube, respectively. Dielectric strengthes of $SF_6/CO_2$ mixtures were investigated. Additionally, characteristics of discharge channels were observed by high speed cameras and the physical properties were discussed. The pre-breakdown propagates with a stepwise process. The in to breakdown from the corona onset point in positive polarity was shorter than that in negative polarity. The time intervals of positive leaders are shorter than those of negative leaders, and the path of positive leader channel is zigzag.

  • PDF

Electroluminescence Properties of Simple Anthracene Derivatives Containing Phenyl or Naphthyl Group at 9,10-position for the Blue OLED

  • Kim, Si Hyun;Lee, Song Eun;Kim, Yong Kwan;Lee, Seung Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.562-567
    • /
    • 2017
  • The organic light-emitting diodes are fabricated with six anthracene derivatives containing simple substituents such as phenyl or naphthyl group. The device structure is as in the following: Indium tin oxide (ITO) (180 nm)/4,4-4,4',4"-tris[N-(1-naphthyl)-N-phenylamino]triphenylamine (2-TNATA) (30 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl-1-amino] biphenyl (NPB) (20 nm)/Emitting compound (30 nm)/2,2',2"-(1,3,5-Benzinetriyl)-tris (1-phenyl-1-H-benz-imidazole) TPBi (40 nm)/lithium quinolate (Liq) (2 nm)/Al (100 nm). In the emitting layer the anthracene derivatives are used without any dopant. All the six devices show blue emissions. Among the tested diodes, the one with 9-(2-naphthyl)-10-(p-tolyl) anthracene (2-NTA) exhibited luminous efficiency, power and external quantum efficiencies of 3.26 cd/A, 0.98 lm/A, 2.8 % at $20mA/cm^2$.

Machining Characteristics of Micro Structure using Single-Crystal Diamond Tool on Cu-plated Mold (단결정 다이아몬드공구를 사용한 Cu 도금된 몰드의 미세 구조체 가공특성)

  • Kim, Chang-Eui;Jeon, Eun-chae;Je, Tae-Jin;Kang, Myung Chang
    • Journal of Powder Materials
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2015
  • The optical film for light luminance improvement of BLU that is used in LCD/LED and retro-reflective film is used as luminous sign consist of square and triangular pyramid structure pattern based on V-shape micro prism pattern. In this study, we analyzed machining characteristics of Cu-plated flat mold by shaping with diamond tool. First, cutting conditions were optimizing as V-groove machining for the experiment of micro prism structure mold machining with prism pattern shape, cutting force and roughness. Second, the micro prism structure such as square and triangular pyramid pattern were machined by cross machining method with optimizing cutting conditions. Burr and chip shape were discussed with material properties and machining method.

Compared electrical and optical characteristics of white organic light-emitting diodes using two complementary and three primary colors

  • Kim, You-Hyun;Choi, Jea-Yoon;Lee, Su-Hwan;Yoon, Hyun-Soo;Seo, Ji-Hoon;Park, Jung-Hyun;Kim, Young-Kwan;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1429-1432
    • /
    • 2007
  • We fabricated white organic light emitting diodes(WOLED) having two complementary and three primary colors with emission layers of DPVBi / MADN : DCM2-0.5% and DPVBi / $Alq_3$ / MADN : DCM2-1.5%, respectively. WOLED using three primary colors shows broad electroluminescence including green emission peak at 510nm while optical properties of the two complementary WOLED was higher current efficiency of 6.2 cd/A than 4.9 cd/A of three primary color WOLED. The maximum luminescence of WOLED with two complimentary color was $15200cd/m^2$ along with luminous efficiency 6.2cd/A, as achieving stable white color coordinates for both of WOLEDs at (0.33 , 0.33) almost.

  • PDF

Red Fluorescent Donor-π-Acceptor Type Materials based on Chromene Moiety for Organic Light-Emitting Diodes

  • Yoon, Jhin-Yeong;Lee, Jeong Seob;Yoon, Seung Soo;Kim, Young Kwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1670-1674
    • /
    • 2014
  • Two red emitters, 2-(7-(4-(diphenylamino)styryl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 1) and 2-(7-(julolidylvinyl)-2-methyl-4H-chromen-4-ylidene)malonitrile (Red 2) have been designed and synthesized for application as red-light emitters in organic light emitting diodes (OLEDs). In these red emitters, the julolidine and triphenyl moieties were introduced to the emitting core as electron donors, and the chrome-derived electron accepting groups such as 2-methyl-(4H-chromen-4-ylidene)malononitrile were connected to electron donating moieties by vinyl groups. To explore the electroluminescence properties of these materials, multilayered OLEDs using red materials (Red 1 and Red 2) as dopants in $Alq_3$ host were fabricated. In particular, a device using Red 1 as the dopant material showed maximum luminous efficiencies and power efficiencies of 0.82 cd/A and 0.33 lm/W at $20mA/cm^2$. Also, a device using Red 2 as a dopant material presented the CIEx,y coordinates of (0.67, 0.32) at 7.0 V.

Dependence of Round Type Electrodeless Lamp According to Ferrite Core and Cold Spot Temperature (둥근형 무전극 램프의 페라이트 코어와 냉점의 온도 의존성)

  • Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Han, Hoo-Sek;Park, Jee-Sik;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.5
    • /
    • pp.833-838
    • /
    • 2008
  • Generally Lighting system consists of lamp and luminaire. When a fluorescent lamp is installed in luminaire, power and light output is changed by ambient temperature. Particularly electrodeless lamp depends on the changes that are mercury pressure with amalgam temperature and magnetic properties with ferrite temperature. It has finally influence on optical efficiency. In this study, the temperature change of ferrite and cold spot, vessel are measured at transitional state and then same characteristics are measured with increase of ambient temperature. At transitional state, luminous flux is related to temperature change of cold spot that compare with behavior of mercury pressure and light output. At increase of ambient temperature, we analyzed change that efficiency and electrical, optical characteristics of elecrodeless lamp are related to ferrite core and cold spot temperature. Additionally, spectrum, color temperature and coordination are measured to check that is relation with ambient temperature.

Highly Efficient Red Phosphorescent OLEDs Based on Ir(III) Complexes with Fluorine-substituted Benzoylphenylpyridine Ligand

  • Kang, Hyun-Ju;Lee, Kum-Hee;Lee, Suk-Jae;Seo, Ji-Hyun;Kim, Young-Kwan;Yoon, Seung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3711-3717
    • /
    • 2010
  • Four orange-red phosphorescent Ir(III) complexes were designed and synthesized based on the benzoylphenylpyridine ligand with a fluorine substituent. Multilayered OLEDs with the device structure, ITO/2-TNATA/NPB/CBP : 8% Ir(III) complexes/BCP/Liq/Al, were fabricated using these complexes as dopant materials. All the devices exhibited orange-red electroluminescence and their electroluminescent properties were quite sensitive to the structural features of the dopants in the emitting layers. Among these, the maximum luminance ($14700\;cd/m^2$ at 14.0 V) was observed in the device containing Ir(III) complex 1 as the dopant. In addition, its luminous, power and quantum efficiency were 11.7 cd/A, 3.88 lm/W and 9.58% at $20\;mA/cm^2$, respectively. The peak wavelength of electroluminescence was 606 nm with CIE coordinates of (0.61, 0.38) at 12.0 V. The device also showed stable color chromaticity with various voltages.

Properties of Organic light-emitting Diodes with various Electron-transporting layers (전자 수송층에 따른 유기 발광 다이오드 소자의 전기적 특성)

  • Lee, Seok-Jae;Park, Jung-Hyun;Seo, Ji-Hyun;Lee, Kum-Hee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.436-437
    • /
    • 2007
  • Organic light-emitting diodes (OLEDs) were fabricated with the electron dominant complex, 4,7-diphenyl-1, 10-phenanthroline (Bphen) into the traditional electron transporting material of tris (S-hydroxyquinoline) aluminum $(Alq_3)$, neat $Alq_3$ and Bphen as electron-transporting layers (ETLs), respectively. Use of the Bphen material results in efficient electron injection and transport, allowing for high luminous efficiency devices. The devices with neat $Alq_3$(Device1), 1:1 mixed $Alq_3$ : Bphen(Device2), and Bphen(Device3) have efficiency of 15.3cd/A, 16.9cd/A, 20.9cd/A, respectively, at $20\;mA/cm^2$. The efficiency characteristic of device with Bphen is best, but the device that is satisfied high efficiency and stability at once is observed in Device2.

  • PDF

Non-polar and Semi-polar InGaN LED Growth on Sapphire Substrate

  • Nam, Ok-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.51-51
    • /
    • 2010
  • Group III-nitride semiconductors have been widely studied as the materials for growth of light emitting devices. Currently, GaN devices are predominantly grown in the (0001) c-plane orientation. However, in case of using polar substrate, an important physical problem of nitride semiconductors with the wurtzite crystal structure is their spontaneous electrical polarization. An alternative method of reducing polarization effects is to grow on non-polar planes or semi-polar planes. However, non-polar and semipolar GaN grown onto r-plane and m-plane sapphire, respectively, basically have numerous defects density compared with c-plane GaN. The purpose of our work is to reduce these defects in non-polar and semi-polar GaN and to fabricate high efficiency LED on non/semi-polar substrate. Non-polar and semi-polar GaN layers were grown onto patterned sapphire substrates (PSS) and nano-porous GaN/sapphire substrates, respectively. Using PSS with the hemispherical patterns, we could achieve high luminous intensity. In case of semi-polar GaN, photo-enhanced electrochemical etching (PEC) was applied to make porous GaN substrates, and semi-polar GaN was grown onto nano-porous substrates. Our results showed the improvement of device characteristics as well as micro-structural and optical properties of non-polar and semi-polar GaN. Patterning and nano-porous etching technologies will be promising for the fabrication of high efficiency non-polar and semi-polar InGaN LED on sapphire substrate.

  • PDF

Discovery of a New Mechanism of Dust Destruction in Strong Radiation Fields and Implications

  • Hoang, Thiem;Tram, Le Ngoc;Lee, Hyseung;Ahn, Sang-hyeon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.44.3-44.3
    • /
    • 2019
  • Massive stars, supernovae, and kilonovae are among the most luminous radiation sources in the universe. Observations usually show near- to mid-infrared (NIR-MIR, 1-5~micron) emission excess from H II regions around young massive star clusters (YMSCs) and anomalous dust extinction and polarization towards Type Ia supernova (SNe Ia). The popular explanation for such NIR-MIR excess and unusual dust properties is the predominance of small grains (size a<0.05micron) relative to large grains (a>0.1micron) in the local environment of these strong radiation sources. The question of why small grains are predominant in these environments remains a mystery. Here we report a new mechanism of dust destruction based on centrifugal stress within extremely fast rotating grains spun-up by radiative torques, namely the RAdiative Torque Disruption (RATD) mechanism, which can resolve this question. We find that RATD can destroy large grains located within a distance of ~ 1 pc from a massive star of luminosity L~ 10^4L_sun and a supernova. This increases the abundance of small grains relative to large grains and successfully reproduces the observed NIR-MIR excess and anomalous dust extinction/polarization. We show that small grains produced by RATD can also explain the steep far-UV rise in extinction curves toward starburst and high redshift galaxies, as well as the decrease of the escape fraction of Ly-alpha photons observed from HII regions surrounding YMSCs.

  • PDF