DOI QR코드

DOI QR Code

Highly Efficient Red Phosphorescent OLEDs Based on Ir(III) Complexes with Fluorine-substituted Benzoylphenylpyridine Ligand

  • Kang, Hyun-Ju (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Kum-Hee (Department of Chemistry, Sungkyunkwan University) ;
  • Lee, Suk-Jae (Department of Information Display, Hongik University) ;
  • Seo, Ji-Hyun (Department of Information Display, Hongik University) ;
  • Kim, Young-Kwan (Department of Information Display, Hongik University) ;
  • Yoon, Seung-Soo (Department of Chemistry, Sungkyunkwan University)
  • Received : 2010.09.30
  • Accepted : 2010.10.18
  • Published : 2010.12.20

Abstract

Four orange-red phosphorescent Ir(III) complexes were designed and synthesized based on the benzoylphenylpyridine ligand with a fluorine substituent. Multilayered OLEDs with the device structure, ITO/2-TNATA/NPB/CBP : 8% Ir(III) complexes/BCP/Liq/Al, were fabricated using these complexes as dopant materials. All the devices exhibited orange-red electroluminescence and their electroluminescent properties were quite sensitive to the structural features of the dopants in the emitting layers. Among these, the maximum luminance ($14700\;cd/m^2$ at 14.0 V) was observed in the device containing Ir(III) complex 1 as the dopant. In addition, its luminous, power and quantum efficiency were 11.7 cd/A, 3.88 lm/W and 9.58% at $20\;mA/cm^2$, respectively. The peak wavelength of electroluminescence was 606 nm with CIE coordinates of (0.61, 0.38) at 12.0 V. The device also showed stable color chromaticity with various voltages.

Keywords

References

  1. Li, C. L.; Su, Y. J.; Tao, Y. T.; Chou, P.-T.; Chien, C. H.; Cheng, C.-C. Adv. Funct. Mater. 2005, 15, 387. https://doi.org/10.1002/adfm.200305100
  2. Kohler, A.; Wilson, J. S.; Forrest, R. H. Adv. Mater. 2002, 14, 701. https://doi.org/10.1002/1521-4095(20020517)14:10<701::AID-ADMA701>3.0.CO;2-4
  3. D'Andrade, B. W.; Brooks, J.; Admovich, V.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2002, 14, 1032. https://doi.org/10.1002/1521-4095(20020805)14:15<1032::AID-ADMA1032>3.0.CO;2-6
  4. Adachi, C.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R. J. Appl.Phys. 2001, 90, 5048. https://doi.org/10.1063/1.1409582
  5. Kawamura, Y.; Goushi, K.; Brooks, J.; Brown, J. J.; Sasabe, H.; Adachi, C. Appl. Phys. Lett. 2005, 86, 071104. https://doi.org/10.1063/1.1862777
  6. Kohler, A.; Wilson, J. S.; Friend, R. H. Adv. Mater. 2002, 14, 701. https://doi.org/10.1002/1521-4095(20020517)14:10<701::AID-ADMA701>3.0.CO;2-4
  7. Chen, F. C.; Yang, Y. Appl. Phys. Lett. 2002, 80, 2308. https://doi.org/10.1063/1.1462862
  8. Ahn, S. Y.; Lee, A. S.; Seo, J. H.; Kim, Y. K.; Ha, Y. Thin Solid Films. 2009, 517, 4111. https://doi.org/10.1016/j.tsf.2009.01.177
  9. Lee, S. J.; Park, J. S.; Song, M.; Shin, I. A.; Kim, Y. I.; Lee, J. W.; Kang, J. W.; Gal, Y. S.; Kang, S.; Lee, J. Y.; Jing, S. H.; Kim, H. S.; Chae, M. Y.; Ji, S. H. Adv. Funct. Mater. 2009, 19, 2205. https://doi.org/10.1002/adfm.200900322
  10. Yang, C.; Zhang, X.; You, H.; Zhu, L.; Chen, L.; Zhu, L.; Tao, Y.; Ma, D.; Shuai, Z.; Qin, J. Adv. Funct. Mater. 2008, 18, 928. https://doi.org/10.1002/adfm.200701115
  11. Chen, C.-T. Chem. Mater. 2004, 16, 4389. https://doi.org/10.1021/cm049679m
  12. Cummings, S. D.; Eisenberg, R. J. Am. Chem. Soc. 1996, 118, 1946.
  13. Justin Thomas, K. R.; Velusamy, M.; Lin, J. T.; Chein, C.-H.; Tao, Y.-T.; Wen, Y. S.; Hu, Y.-H.; Chou, P. T. Inog. Chem. 2005, 44, 5677. https://doi.org/10.1021/ic050385s
  14. Lo, K. K.-W.; Chung, C.-K.; Zhu, N. Chem. Eur. J. 2003, 9, 475. https://doi.org/10.1002/chem.200390050
  15. Lee, K. H.; Kim, J. H.; Seo, J. H.; Kim, Y. K.; Yoon, S. S. J. Nanosci.Nanotechnol. 2010, 10, 3193. https://doi.org/10.1166/jnn.2010.2237
  16. Lee, K. H.; Park, J. K.; You, J. N.; Seo, J. H.; Kim, Y. K.; Yoon, S. S. IMID DIGEST 2009, 709.
  17. Seo, J. H.; Seo, J. H.; Kim, Y. K.; Hyung, G. W.; Hwang, J. H.; Shin, D. M.; Lee, K. H.; Kwon, Y. S.; Yoon, S. S.; Kim, Y. H.; Kim, W. Y. SID 08 DIGEST 2008, 2025.
  18. Hong, H. W.; Chen, T. M. Mater. Chem. Phys. 2007, 101, 170. https://doi.org/10.1016/j.matchemphys.2006.03.011
  19. Wang, Y.; Petrov, V. A.; Grousin, V. V. Pat. Appl (Dupont) 2000.
  20. Grushin, V. V.; Herron, N.; Lecloux, D. D.; Marshall, W. J.; Petrov, V. A.; Wang, Y. Chem. Commun. 2001, 1494.
  21. Ho, C. L.; Wong, W. Y.; Zhou, G. J.; Xie, Z.; Wang, L. Adv. Funct.Mater. 2007, 17, 2925. https://doi.org/10.1002/adfm.200601205
  22. Lee, K. H.; Kang, H. J.; Park, J. K.; Seo, J. H.; Kim, Y. K.; Yoon, S. S. Thin Solid Films. 2010, 518, 6188. https://doi.org/10.1016/j.tsf.2010.03.146
  23. Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E. J. Am. Chem. Soc. 2001, 123, 4304. https://doi.org/10.1021/ja003693s
  24. Balton, C. B.; Murtaza, Z.; Shaver, R. J.; Rillema, D. P. Inorg.Chem. 1992, 31, 3230. https://doi.org/10.1021/ic00041a012
  25. Colombo, M. G.; Brunold, T. C.; Reidener, T.; Gudel, H. U.; Fortsch, M.; Burgi, H.-B. Inorg. Chem. 1994, 33, 545. https://doi.org/10.1021/ic00081a024
  26. Wong, W. Y.; Zhou, G. J.; Yu, X. M.; Kwok, H. S.; Tang, B. Z. Adv.Funct. Mater. 2006, 16, 838. https://doi.org/10.1002/adfm.200500523
  27. Laskar, I. R.; Chen, T.-M. Chem. Mater. 2004, 16, 111. https://doi.org/10.1021/cm030410x
  28. Yang, C.; Zhang, X.; You, H.; Zhu, L.; Chen, L.; Zhu, L.; Tao, Y.; Ma, D.; Shuai, Z.; Qin, J. Adv. Funct. Mater. 2007, 17, 651. https://doi.org/10.1002/adfm.200600663
  29. Seo, J. H.; Park, I. H.; Kim, G. Y.; Lee, K. H.; Kim, M. K.; Yoon, S. S.; Kim, Y. K. Appl. Phys. Lett. 2008, 92, 183303. https://doi.org/10.1063/1.2907190
  30. Lee, K. H.; Kang, L. K.; Lee, J. Y.; Kang, S. W.; Jeon, S. O.; Yook, K. S.; Lee, J. Y.; Yoon, S. S. Adv. Funct. Mater. 2010, 20, 1345. https://doi.org/10.1002/adfm.200901895
  31. Lee, K. H.; Seo, J. H.; Kim, Y. K.; Yoon, S. S. J. Nanosci. Nanotechnol. 2009, 9, 7099.

Cited by

  1. Solution-processable iridium complexes for efficient orange-red and white organic light-emitting diodes vol.22, pp.4, 2012, https://doi.org/10.1039/C1JM13846D
  2. Metallo-organic Conjugated Systems for Organic Electronics vol.54, pp.5-6, 2014, https://doi.org/10.1002/ijch.201400023
  3. Red Phosphorescent Bis-Cyclometalated Iridium Complexes with Fluorine-, Phenyl-, and Fluorophenyl-Substituted 2-Arylquinoline Ligands vol.22, pp.12, 2016, https://doi.org/10.1002/chem.201504392
  4. Site-selective Suzuki–Miyaura coupling of heteroaryl halides – understanding the trends for pharmaceutically important classes vol.8, pp.1, 2017, https://doi.org/10.1039/C6SC02118B
  5. Structural Mimics of Phenyl Pyridine (ppy) - Substituted, Phosphorescent Cyclometalated Homo and Heteroleptic Iridium(III) Complexes for Organic Light Emitting Diodes - An Overview pp.15278999, 2017, https://doi.org/10.1002/tcr.201700035
  6. Quantum Chemical Study of the OLED Materials Tris[4'-(1"-phenylbenzimidazol-2"-yl)phenyl] Derivatives of Amine and Benzene vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1733
  7. Efficient red phosphorescent iridium complexes for organic light-emitting diodes based on 5-benzoyl-2-phenylpyridine ligands with fluorine and methyl moieties vol.162, pp.7, 2010, https://doi.org/10.1016/j.synthmet.2012.02.008
  8. Synthesis and Electroluminescent Properties of Ir(III) Complexes Containing Alkenyl Pyridine Ligands vol.568, pp.1, 2010, https://doi.org/10.1080/15421406.2012.708839