• Title/Summary/Keyword: Lubricant viscosity

Search Result 111, Processing Time 0.024 seconds

Experimental Research on Lubricant Oil in Dual Fuel Medium-Speed Engines (중속용 Dual Fuel엔진의 윤활유에 관한 실험적 연구)

  • Hong, Sung-Ho;Park, Chang-Hoon;Park, Jungdo;Eddie, Chen
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • We performed an experimental research on lubricant oil in dual fuel medium-speed engines. It is important to select the appropriate lubricant oil because it could significantly affect engine lifetime and performance. We generally recommend the selection of the lubricant oil according to the fuel grades as contents in the project guide. However, it is a considerable challenge for shipyards to implement this concept because of the lack of space to install the complicated lubricating oil system for dual fuel engines. Therefore, we determine the adaptability of one-common lubricant oil for HiMSEN dual fuel engine through this experimental research. To check abnormality in gas mode operation and durability of engine components when a lubricating oil with high BN (base number) is used, overhaul inspections and lubricant oil analysis are carried out two times, and four times, respectively, during an operation of approximately 300 h. We investigated the variations in kinematic viscosity, base number, element quantity, pentane insoluble and sulfated ash in lubricant oil analysis. Moreover, we also investigated whether the deposit formation or wear occurred in various bearings, injectors, exhaust valves, intake valves, piston rings and so on through the overhaul inspections. There are no problems in the lubricant analysis and the overhaul inspections. Through the experimental research, we confirm that one-common lubricant oil should be selected according to the higher sulfur content of fuel oil in dual fuel engines.

Experimental investigation of friction in guide zone of tube hydroforming with material and lubricant (튜브 액압성형 공정의 가이드영역에서 소재 및 윤활에 따른 마찰 특성의 실험적 연구)

  • Yi, H.K.;Yim, H.S.;Lee, G.Y.;Lee, S.M.;Chung, C.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.83-86
    • /
    • 2008
  • In this study, friction test was proposed to obtain coefficient of friction between tube and die in guide zone of tube hydroforming and friction coefficients were evaluated at different materials, viscosity of lubricants and internal pressures. For this study, STKM11A and SUS tubes were prepared. The tube was expanded by an internal pressure against the tool wall. By pushing the tube through the tool, a friction force at the contact surface between the tube and the tool occurs From the recorded axial feeding forces, the friction coefficients between tube and die at the guide zone in tubular hydroforming can be estimated. The effects of the various internal pressures, viscosity of lubricants, tube materials, tube size and die coating on the friction forces and friction coefficients are discussed.

  • PDF

Experimental investigation of friction in expansion zone of tube hydroforming with material and lubricant (튜브 액압성형 공정의 확관영역에서 소재 및 윤활에 따른 마찰 특성의 실험적 연구)

  • Lee, G.Y.;Yim, H.S.;Lee, S.M.;Yi, H.K.;Chung, G.S.;Moon, Y.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.359-362
    • /
    • 2008
  • In this study, friction test was proposed to obtain coefficient of friction between tube and die in expansion zone of tube hydroforming and friction coefficients were evaluated at different materials, viscosity of lubricants and internal pressures. For this study, STKM11A and SUS tubes were prepared. The tube was expanded by an internal pressure against the tool wall. The tube was expanded by an internal pressure against the tool wall. By pushing the tube through the tool, a friction force at the contact surface between the tube and the tool occurs. From the measured geometries and FE analysis, the friction coefficients between tube and die at the expansion zone in tubular hydroforming can be estimated. The effects of the various internal pressures, viscosity of lubricants, tube materials and tube thickness on friction coefficients are discussed.

  • PDF

Low Noise Design of Rotor-Bearing System (축-베어링계의 저소음 설계)

  • 노병후;김대곤;김경웅
    • Tribology and Lubricants
    • /
    • v.19 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • The purpose of the paper is to investigate the effects of design parameters on the noise of a rotor- bearing system supported in oil lubricated journal bearings. Effects of radial clearance and width of the bearing, lubricant viscosity and mass eccentricity of the rotor are also examined. Numerical results of the parametric studies are summarized through graph for the A-weighted sound pressure level of the bearing with respect to the rotational speed of the rotor. Results show that the sound pressure level of the bearing is markedly influenced by the mass eccentricity of the rotor and the radial clearance and the width of the bearing. The high viscosity of the lubricant slightly decreases the noise of the bearing, but its effect is relatively very low at high speed. The results of the paper could be an aid in the low noise design of rotor-bearing system supported in oil lubricated journal bearings.

Film Thickness and Low Speed Asperity Contacts (潤滑油膜과 저속금속접촉)

  • Moon, Tak-Jin
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.26-30
    • /
    • 1987
  • The effects of high viscosity polybutene lubricant on the asperity contacts between a flat washer and a ball were tested using three balls/two flat washers rotational apparatus. The asperity contacts were dependent on the ratio of EHD flim thickness (h) and surface roughness($\sigma$). The viscosity-pressure coefficient of lubricant gave a significant effect on the film thickness and thereby on h/$\sigma$ ratio.

A Study on the Noise Characteristics of Cylindrical Roller Bearings (원통형 로울러 베어링의 소음 특성에 관한 연구)

  • 노병후;김대곤;김경웅
    • Tribology and Lubricants
    • /
    • v.19 no.6
    • /
    • pp.342-348
    • /
    • 2003
  • The purpose of the paper is to investigate the noise characteristics of cylindrical roller bearings. For the sake of simplicity, it is assumed that the cylindrical roller bearing is infinitely long, and there is no outside force acting on the bearing. The effects of radial clearance of the bearing, viscosity of the lubricant and number of the roller on the noise of the bearing are also examined. Results show that the fundamental frequency of the bearing noise corresponds to the multiplication of number of the roller and whirling frequency of the roller center or the retainer. The acoustical frequency spectra of the roller bearing are pure tone spectra, containing the fundamental frequency of the bearing and its super­harmonics. The low viscosity of the lubricant, high radial clearance of the bearing, and low number of the roller decrease the bearing noise. The results and discussions of the present paper could aid in the low­noise design of the cylindrical roller bearing.

Experimental Determination of Friction Characteristics for Advanced High Strength Steel Sheets (초고강도강판 마찰특성의 실험적 규명)

  • Kim, N.J.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.22 no.4
    • /
    • pp.223-228
    • /
    • 2013
  • The friction coefficients of advanced high strength steel sheets were experimentally determined. In the friction test, the pulling and holding forces acting on the sheet for various friction conditions, such as lubricant viscosity, pulling speed, blank holding pressure, sheet surface roughness, and hardness of the sheet were measured and the friction coefficient was calculated based on Coulomb's friction law. While the friction coefficient, generally, decreases as the value of friction factor increases, the factor associated with the sheet surface roughness shows U shape behavior for the friction coefficient. Furthermore, the relationship between friction coefficient and the wear volume, which was computed for the roughness of both sheet surfaces and the friction area, is linearly proportional.

Study on the Calculation of Friction Coefficient for Sheet Metal Forming Analysis (박판 성형해석을 위한 마찰계수의 산정에 관한 연구)

  • Keum, Y.T.;Shim, J.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.27-30
    • /
    • 2007
  • In order to measure the friction coefficient used in sheet metal forming analysis, a friction tester was manufactured and friction tests were performed in various forming conditions. Based on the friction coefficients measured, a mathematical friction model was constructed in terms of lubricant viscosity, blank holding force, punch velocity and sheet roughness. In addition, the effect of the number of forming parameters in the calculation of friction coefficient on the accuracy of sheet metal forming analysis was investigated by comparing the punch loads obtained from the FEM simulation, in which the friction coefficients were determined by a few parameters with the experimental measurement.

  • PDF

Mathematical Friction Model for Sheet Metal Forming Analysis (박판성형 해석용 수학적 마찰 모델)

  • Keum Y. T.;Song M. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.182-185
    • /
    • 2004
  • Based on the experimental observation, the mathematical friction model, which is an essential information for analyzing the forming process of sheet metal, is developed considering lubricant viscosity, surface roughness and hardness, punch corner radius, and punch speed. By comparing the punch load found by FEM with a proposed friction model with experimental measurement when the coated and uncoated steel sheets are formed in 2-D geometry in dry and lubricant conditions, the validity and accuracy of the developed friction model are demonstrated.

  • PDF

Friction Model for Sheet Metal Forming Analysis(Part 2 :Mathematical Model) (박판성형 해석용 마찰 모델(2부:수학적 모델))

  • 금영탁;이봉현
    • Transactions of Materials Processing
    • /
    • v.13 no.5
    • /
    • pp.461-465
    • /
    • 2004
  • Based on the experimental observation, the mathematical friction model, which is an essential information for analyzing the forming process of sheet metal, is developed considering lubricant viscosity, surface roughness and hardness, punch comer radius, and punch speed. By comparing the punch load found by FEM with a proposed friction model with experimental measurement when the coated and uncoated steel sheets are formed in 2-D geometry in dry and lubricant conditions, the validity and accuracy of the developed friction model are demonstrated.