• Title/Summary/Keyword: Low-voltage DC

Search Result 1,268, Processing Time 0.033 seconds

A Study on the Design of Step Up DC-DC Converter and Parallel Operation (승압형 DC-DC 컨버터의 설계 및 병렬운전에 관한 연구)

  • 서광덕;홍찬욱;설승기;박민호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.6
    • /
    • pp.579-587
    • /
    • 1992
  • This paper is to study on the step-up DC-DC converter for power system which yields output characteristics of low voltage and high current, such as fuel cell generation system. DC-AC-DC scheme is suggested for high ratio of voltage conversion. Three phase MOSFET-SPWM inverter is adopted for intermediate AC conversion and inverter output frequency is chosen at 400[Hz] in order to reduce the size of magnetic circuit and DC filter. Since control strategy which combines voltage controller with current controller in parallel is used, good output performance is obtained both in steady state and in transient state like load variation, not only in single unit operation but also in parallel operation.

A New High Efficiency and Low Pronto On-Board DC/DC Converter for Digital Car Audio Amplifier

  • Kim Chong-Eun;Han Sang-Kyoo;Moon Gun-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.601-605
    • /
    • 2004
  • A new high efficiency and low profile on-board DC/DC converter for digital car audio amplifier is proposed. The proposed converter shows the continuous input current, no DC excitation current of the transformer, the minimized electro-magnetic interference (EMI), no output inductor, and the low voltage stress of the secondary rectifier diodes. The 60W industrial sample of the proposed converter is implemented for digital car audio amplifier and the measured efficiency is $88.3\%$ at nominal input voltage.

  • PDF

Active CDS-Clamped L-Type Current-Fed Isolated DC-DC Converter

  • Nguyen, Minh-Khai;Duong, Truong-Duy;Lim, Young-Cheol;Choi, Joon-Ho
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.955-964
    • /
    • 2018
  • In this paper, an active capacitor-diode-switch (CDS) snubber is proposed for L-type current-fed isolated DC-DC converters. The proposed CDS-clamped converter has a number of advantages. It can achieve wide range zero-voltage switching (ZVS) on two switches, a continuous input current with a low ripple, a reduction of one active switch and high efficiency. The operating principles, analysis and parameter design guideline are presented. A 300 W prototype is built to test the proposed converter. Simulation and experimental results are shown at 30 V input voltage and 400 V output voltage.

A Study on 75kW Bidirectional Converter for LVDC Distribution (LVDC 배전을 위한 75kW급 양방향 컨버터 연구)

  • Lee, Jung-Yong;Kim, Ho-Sung;Cho, Jin-Tae;Kim, Ju-Yong;Cho, Younghoon
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.432-433
    • /
    • 2018
  • A new DC-DC converter circuit for LVDC(Low Voltage Direct-Current) distribution is proposed. DC-DC converter consists of two stage which are voltage balancer and converter stage. The balancing circuit adjust balance input voltage of converter circuit and compensate for unbalanced loads and short circuits. The converter circuit control the bipolar output voltage ${\pm}750V$. Simulation is carried out for this DC-DC converter system.

  • PDF

A New High Efficiency ZVZCS Bidirectional DC/DC Converter for HEV 42V Power Systems

  • Kim Chong-Eun;Han Sang-Kyoo;Park Ki-Bum;Moon Gun-Woo
    • Journal of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.271-278
    • /
    • 2006
  • A new high efficiency zero-voltage and zero-current switching (ZVZCS) bidirectional DC/DC converter is proposed in this paper. The proposed converter consists of two symmetric half-bridge cells as the input and output stages. MOSFETs of input stage are turned-on in ZVS condition, and those of output stage are turned-off in ZCS condition. In addition, MOSFETs of input and output stages have low voltage stresses clamped to input and output voltage, respectively. Therefore, the proposed converter has high efficiency and high power density. The operational principles are analyzed and the advantages of the proposed converter are described. The 300W prototype of the proposed converter is implemented for 42V hybrid electric vehicle (HEV) application in order to verify the operational principles and advantages.

Analysis and Control of a Modular MV-to-LV Rectifier based on a Cascaded Multilevel Converter

  • Iman-Eini, Hossein;Farhangi, Shahrokh;Khakbazan-Fard, Mahboubeh;Schanen, Jean-Luc
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.133-145
    • /
    • 2009
  • In this paper a modular high performance MV-to-LV rectifier based on a cascaded H-bridge rectifier is presented. The proposed rectifier can directly connect to the medium voltage levels and provide a low-voltage and highly-stable DC interface with the consumer applications. The input stage eliminates the necessity for heavy and bulky step-down transformers. It corrects the input power factor and maintains the voltage balance among the individual DC buses. The second stage includes the high frequency parallel-output DC/DC converters which prepares the galvanic isolation, regulates the output voltage, and attenuates the low frequency voltage ripple ($2f_{line}$) generated by the first stage. The parallel-output converters can work in interleaving mode and the active load-current sharing technique is utilized to balance the load power among them. The detailed analysis for modeling and control of the proposed structure is presented. The validity and performance of the proposed topology is verified by simulation and experimental results.

A New DC Ripple-Voltage Suppression Scheme in Three Phase Buck Diode Rectifiers with Unity Power Factor (단위 역률을 갖는 3상 BUCK 다이오드 정류기에서의 새로운 DC 리플-전압 저감 기법)

  • Lee, Dong-Yun;Choy, Ick;Song, Joong-Ho;Choi, Ju-Yeop;Kim, Kwang-Bae;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.154-162
    • /
    • 2000
  • A technique to suppress the low frequency ripple voltage of the DC output ${\gamma}$oltage in three-phase buck d diode rectifiers is presented in this paper. The proposed pulse frequency modulation method is employed to r regulate the output voltage of the buck diode rectifiers and guarantee zero-current switching of the switch over the Vvide load range. The pulse frequency control method used in tIns paper shows generally good p performance such as low THD of the input line current and unity power factor. In addition, the pulse f freιluency method can be effectively used to suppress the low frequency voltage ripple appeared in the dc output voltage. The proposed technique illustrates its validity and effectiveness through the respective s simulations and experiments.

  • PDF

Two Modified Z-Source Inverter Topologies - Solutions to Start-Up Dc-Link Voltage Overshoot and Source Current Ripple

  • Bharatkumar, Dave Heema;Singh, Dheerendra;Bansal, Hari Om
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1351-1365
    • /
    • 2019
  • This paper proposes two modified Z-source inverter topologies, namely an embedded L-Z-source inverter (EL-ZSI) and a coupled inductor L-Z source inverter (CL-ZSI). The proposed topologies offer a high voltage gain with a reduced passive component count and reduction in source current ripple when compared to conventional ZSI topologies. Additionally, they prevent overshoot in the dc-link voltage by suppressing heavy inrush currents. This feature reduces the transition time to reach the peak value of the dc-link voltage, and reduces the risk of component failure and overrating due to the inrush current. EL-ZSI and CL-ZSI possess all of the inherent advantages of the conventional L-ZSI topology while eliminating its drawbacks. To verify the effectiveness of the proposed topologies, MATLAB/Simulink models and scaled down laboratory prototypes were constructed. Experiments were performed at a low shoot through duty ratio of 0.1 and a modulation index as high as 0.9 to obtain a peak dc-link voltage of 53 V. This paper demonstrates the superiority of the proposed topologies over conventional ZSI topologies through a detailed comparative analysis. Moreover, experimental results verify that the proposed topologies would be advantageous for renewable energy source applications since they provide voltage gain enhancement, inrush current, dc-link voltage overshoot suppression and a reduction of the peak to peak source current ripple.

2-stage 3-phase PWM AC/DC Converter for Unity Power Factor Drive of Synchronous Generator (단위역률동작을 위한 동기 발전기 여자 시스템용 2단 3상 PWM AC/DC 컨버터)

  • Lee, Sang-Hun;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.187-192
    • /
    • 2007
  • The terminal voltage of a synchronous generator is maintained by the field current control of excitation system Generally AC/DC converter which is component of AVR(Automatic Voltage Regulator) system for excitation current control is connected to diode rectifier and DC/DC converter system In the case of diode rectifier system of phase controlled converter, AC/DC converter has low power factor and some low order harmonics in the line current. In this paper, two-stage three-phase PWM AC/DC converter is studied to solve these problems, The proposed method is verified by the computer simulations and experimental results in prototype generation system.

  • PDF

Three-Phase ZVS DC-DC Converter with Low Transformer Turn Ratio for High Step-up and High Power Applications (낮은 변압기 턴비를 갖는 고승압.대전력용 3상 ZVS DC-DC컨버터)

  • Kim, Joon-Geun;Park, Chan-Soo;Choi, Se-Wan;Park, Ga-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.242-249
    • /
    • 2011
  • The proposed converter has easy device selection for high step-up and high power applications since boost half bridge and voltage doubler cells are connected, respectively, in parallel and series in order to increase output power and voltage. Especially, optimized design of high frequency transformers is possible owing to reduced turn ratio and eliminated dc offset, and distributed power through three cores is beneficial to low profile and thermal distribution. The proposed converter does not necessitate start-up circuit and additional clamp circuit due to the use of whole duty range between 0 and 1 and is suitable for applications with wide input voltage range. Also, high efficiency can be achieved since ZVS turn on of switches are achieved in wide duty cycle range and ZCS turn on and off of diodes are achieved. The proposed converter was validated through 5 kW prototype.