• Title/Summary/Keyword: Low-turbulence Flow

Search Result 354, Processing Time 0.023 seconds

Numerical Simulation of Chemically Reacting Laminar and Thrbulent Flowfields Using Preconditioning Scheme (예조건화 기법을 이용한 층류 및 난류 화학반응 유동장 해석)

  • Kim Gyo-Soon;Choi Yun-Ho;Rhee Byung-Ohk;Song Bong-Ha
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.320-327
    • /
    • 2006
  • The computations of chemically reacting laminar and turbulent flows are performed using the preconditioned Navier-Stokes solver coupled with turbulent transport and multi-species equations. A low-Reynolds number $k-\varepsilon$ turbulence model proposed by Chien is used. The presence of the turbulent kinetic energy tenn in the momentum equation can materially affect the overall stability of the fluids-turbulence system. Because of this coupling effect, a fully coupled formulation is desirable and this approach is taken in the present study. Choi and Merkle's preconditioning technique is used to overcome the convergence difficulties occurred at low speed flows. The numerical scheme used for the present study is based on the implicit upwind ADI algorithm and is validated through the comparisons of computational and experimental results for laminar methane-air diffusion flame and $ H_2/O_2$ reacting turbulent shear flow. Preconditioning formulation shows better convergence characteristics than that of non-preconditioned system by approximately five times as much.

The Effect of Intake Swirl Ratios on Combustion Performance in a Heavy-Duty LPG Engine (대형 LPG 엔진의 흡입 스월비에 따른 연소성능에 관한 연구)

  • 한병주;김창업;강건용;이창식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.46-53
    • /
    • 2001
  • To optimize the intake flow condition in the heavy-duty LPG SI engine, five different swirl ratios of intake port were investigated experimentally by oil spot method, LDV and single cylinder engine test. The flow characteristics near the piston surface were observed by oil spot method and magnitudes of swirl flow were measured quantatively by LDV method in the steady flow rig. The engine performances of various swirl flow were also tested with the heavy-duty LPG SI single cylinder engine. In the results, high swirl ratio, above $R_s$=2.3, was not suitable to develope a stable flame kernel and to produce high engine performance. Especially it was more serious under lean burn conditions, since turbulence intensity was smaller than bulk flow though those are increased together. These results were also confirmed by LDV measurement and oil spot method. On the contrary, low swirl ratio($R_s$=1.3) is not good to propagate a flame since the turbulence intensity and bulk flow are vanished during compression stroke and low swirl ratio has too weak initial energy for stable combustion. Therefore, the of optimized swirl ratio f3r the heavy-duty LPG engine in this work was found around $R_s$=2.0.

  • PDF

NUMERICAL ANALYSIS OF THE GUST GENERATOR FOR KARI LOW SPEED WIND TUNNEL (KARI 중형 아음속 풍동용 돌풍 발생기의 수치해석)

  • Park Y. M.;Kwon K. J.;Lee S. W.;Kim T. W.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.275-279
    • /
    • 2005
  • The vortex convection and induced flow field behind the KARI 3m x 4m LSWT gust generator was computed by using Computational Fluid Dynamics. For the accurate simulation of vortex convection, inviscid, laminar, Spalart-Allmars k-e and k-w turbulence models were tested with the NAL gust generator configuration and Spalart-Allmaras turbulence model was selected for the prediction of induced flow field behind the KARI LSWT gust generator. The wind tunnel test was also carried out at KARI LSWT and the results were compared with CFD prediction.

  • PDF

Numerical Study on the Turbulent Flow in the 180^{\circ}$ Bends Decreasing Cross-sectional Aspect Ratio (단면의 폭이 감소하는 180^{\circ}$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1056-1062
    • /
    • 2002
  • This paper reports the characteristics of the three dimensional turbulent flow in the 180 degree bends with decreasing cross-sectional area by numerical method. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number k-epsilon model and algebraic stress model. The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend because of the contraction of cross-sectional area. The rate of increase of turbulent kinetic energy through the bend are lower than that of mean flow. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Heat transfer enhancement in electronic modules using a turbulence promoter (난류촉진체에 의한 전자칩의 열전달촉진에 관한 연구)

  • 박시우;정인기
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.861-870
    • /
    • 1999
  • An experimental study was carried out to investigate the effects of using various shapes of turbulence promoter on the heat-transfer enhancement of 2-D and 3-D arrays of rectangular modules in a rectangular channel for design of noiseless and low-powered cooling fan in the electronic systems. Measurements of heat/mass transfer coefficients were made using a naphthalene sublimation technique, and the friction factors were measured for Reynolds numbers in the range$3.3{\time}10^3$~$1.6{\time}10^4$. Flow visualization was peformed by oil-film method. It was found that heat transfer and pressure drop increased remarkably due to the existence of the promoter. The results of the performance evaluation based on equal pumping power were showed that substantial heat-transfer enhancement was obtained at low Reynolds number range by use of a turbulence promoter.

  • PDF

Flame Stability and NOx Formation by Micro scale Turbulence (마이크로 스케일 난류에 의한 화염안정성 및 NOx 생성)

  • Kim, I.S.;Seo, J.M.;Lee, G.S.;Lee, C.W.
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.57-62
    • /
    • 2001
  • The effect of micro scale turbulence on flame structure and stability were experimentally investigated by changing the area of micro turbulence generator(MTG) and air velocity in terms of low NOx and high efficiency combustion. NOx and CO concentration were also measured for different MTG areas to investigate whether a vane swirler having MTG has a possibility of using as part for low NOx combustor. From the obtained results, it is shown that flame stability region increases and flame size becomes small as MTG area increases since MTG in itself makes small scale recirculation flow and swirler does large scale recirculation one. It is also shown that low NOx concentration(about 20${\sim}$30ppm@$O_2$ 11%) is achieved for all MTG areas without any increase in CO concentration regardless of air velocity range tested in this study when the equivalence ratio is 0.7. The results obtained in this study can give basic guideline for the design of compact low NOx high efficiency combustor using a vane swirler having MTG.

  • PDF

A Reynolds Stress Model for Low-Reynolds-Number Turbulence (저레이놀즈수 난류에 대한 레이놀즈 응력모델)

  • 김광용
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1541-1546
    • /
    • 1993
  • To extend the widely used Gibson and Launder's second order closure model to the low-Reynolds-number region near a wall, modifications have been made for velocity pressure-gradient interaction and dissipation terms in the stress equations, and also for the dissipation rate equation. From the computation of fully developed plane channel flow, it is found that the results with present model agree well with the data of direct numerical simulation in the predictions of stress components. And, the computed mean velocity profile coincides with the universal velocity law.

Numerical Study on the Turbulent Flow in the $180^\circ$ Bends increasing Cross-sectional Aspect Ratio (단면의 폭이 증가하는 $180^\circ$ 곡덕트 내 난류유동의 수치해석적 연구)

  • 김원갑;김철수;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.9
    • /
    • pp.804-810
    • /
    • 2004
  • This paper reports the characteristics of the three dimensional turbulent flow by numerical method in the 180 degree bends with increasing cross-sectional area. Calculated pressure and velocity, Reynolds stress distributions are compared to the experimental data. Turbulence model employed are low Reynolds number $textsc{k}$-$\varepsilon$ model and algebraic stress model(ASM). The results show that the main vortex generated from the inlet part of the bend maintained to outlet of the bend and vortices are continually developed at the inner wall region. The distribution of turbulent kinetic energy along the bend are increase up to 120$^{\circ}$ because of increment of cross-sectional area. Secondary flow strength of the flow is lower about 60% than that of square duct flow.

Development and Evaluation of RANS based Turbulence Model for Viscoelastic Fluid (점탄성 유체해석용 RANS 기반 난류 모델 개발 및 검증)

  • Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.545-550
    • /
    • 2017
  • When the systolic blood pressure is high, intermittent turbulence in blood flow appears in the aorta and carotid artery with stenosis during the systolic period. The turbulent blood flow is difficult to analyze using the Newtonian turbulence model due to the viscous characteristics of blood flow. As the shear rate is increased, the blood viscosity decreases by the viscoelastic properties of blood and a drag reduction phenomenon occurs in turbulent blood flow. Therefore, a new non-Newtonian turbulent model is required for viscoelastic fluid and hemodynamics. The main aims of this study were to develop a non-Newtonian turbulence model using the drag reduction phenomenon based on the standard $k-{\varepsilon}$ turbulent model for a general non-Newtonian fluid. This was validated with the experimental data and has a good tendency for non-Newtonian turbulent flow. In addition, the computation time and resources were lower than those of the low Reynolds number turbulent model. A modified turbulent model was used to analyze various turbulent blood flows.

Three-Dimensional Flow Analysis around Rolling Stock with Square Cross Section Using Low Re ${\kappa}-{\epsilon}$ (사각 단면을 갖는 철도차량 주위의 3차원 유동해석)

  • Jang, Yong-Jun
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.6 s.37
    • /
    • pp.772-777
    • /
    • 2006
  • Three-dimensional numerical study is performed for the flow analysis around the rolling stock with square cross section (Mugungwha train model). The height (H) of rolling stock is considered as the characteristic length and the total length of rolling stock is 40 which correspond to 1/2 unit of rolling stock. The gap between the surface and rolling stock is 0.17H which is average value. The relative velocity between the surface and rolling stock is assumed to be zero and Re=10,000 based on the characteristic length. Low Re ${\kappa}-{\epsilon}$[15] is employed for the calculation of turbulence which resolve all the way to the solid surface (laminar sub-layer). Large flow separation occurred at the front head of train and a pair of vortex is generated on both top and side of rolling stock. The behavior of vortices on the top of the rolling stock is believed to affect the performance of the pantograph which should be intensively investigated. The difference between the high pressure in the front stagnation region of train and the low pressure in the rear separated region causes a large pressure drag. A large pair or vortex are generated in the rear of train and the size of vortex is increased more than the size of cross section of train.