As one of the non-vacuum, low temperature fabrication route, electrochemical synthesis has been focused for pursuing the cost-effective pathway to produce high efficiency photovoltaic devices. Especially the availability to form the thin film structure on flexible substrate would be the great advantage of electrochemical process. The successful synthesis of the most favorable absorber materials such as CdTe and CIGS has been reported by many researchers, however, the efficiency of electrochemically synthesized could not exceed that from vacuum process, because of microstructural controllability and compositional variation on devices. In this study, we represent the effect of process parameters on the microstructure and composition of compound semiconductor during the synthesis, and propose the photovoltaic characteristics of electrochemically synthesized solar cells.
Barium titanate ($BaTiO_3$) glycolate particles were synthesized at temperature as low as $100^{\circ}C$ through glycothermal reaction by using $Ba(OH)_2{\cdot}8H_2O$ and amorphous titanium hydrous gel as precursors and ethylene glycol as solvent. The particle size and morphology of $BaTiO_3$ glycolate powders can be controlled by varying the reaction conditions such as the reaction temperature and Ba:Ti molar ratio of starting precursors. After glycothermal treatment at $220^{\circ}C$ for 24 h in 1.25:1(Ba:Ti), the average particle size of the $BaTiO_3$ glycolate powder was about 200-400 nm and low agglomeration. $BaTiO_3$ powders were formed by heat-treating the glycolate powder in air at $500-1000^{\circ}C$. As a result, the size of $BaTiO_3$ crystallites changed from around 50-300 nm. It is also demonstrated that the size and shape of $BaTiO_3$ particles investigated as a function of calcination temperature. The $BaTiO_3$ particles obtained from optimum synthesis condition were pressed, sintered and measured for the dielectric property. The $BaTiO_3$ ceramics sintered at $1250^{\circ}C$ for 2 h had 98 % of theoretical density. The ceramics have an average grain size of about $1\;{\mu}m$ and displays the high dielectric constant (~3100) and low dielectric loss (<0.1) at room temperature.
Using SHS(Self-propagating High-temperature Synthesis) method, the optimum synthetic condition of titanium carbonitride was established by controlling the parameters such as relative density of mixture (Ti+C), nitrogen pressure, additive amounts of titanium hydride(TiH1.924) and protecting heat loss. Under 1 atm nitrogen pressure, nitridation ratio with changing relative density of the sample compacts has a maximum (87.2%) at about 55%, and in the case of enveloping the pellet with a quartz tube, the highest nitridation ratio of 90% was obtained at about 68%. At relative density of 55%, nitridation ratio with the nitrogen pressure has a miximum (87.3%) at 7 atm. As the amounts of additive titanium hydride increased, nitridation ratio decreased at below 7 atm nitrogen pressure and, increased at above this pressure until percent of addition percent reached 15 wt% and decreased abruptly upon futher increases in titanium hydride. In the synthesis of TiCxNy by combustion reaction, heat transfer from combustion zone to preheating zone and nitrogen gas penetration into the compact were found to be important factors affecting the TiCxNy formation. It was difficult to obtain high nitridation ratio when the conbustion temperature was either too high or too low, and it seems that the retention of high temperature after a combustion wave sweeped through the reactant mixture pellet is critical to obtain a satisfactory nitridation ratio.
미세 $BaTiO_3$ 분말의 합성을 위해 함수 티타니아와 수산화바륨을 원료로 수열합성 실험을 수행하여, 반응시간, 온도, 농도 변화에 따른 전화율, 결정구조 및 생성 분말의 물성을 조사하였다. 전화율에 미치는 영향은 시간 < 온도 < 농도 순이었으며, 2.0 M의 원료를 $180^{\circ}C$에서 2 h 수열합성 시킬 때 최대 전화율을 99.5%를 얻을 수 있었다. 낮은 농도(0.25 M)에서는 고온에서도 미반응 $BaCO_3$와 미반응 $TiO_2$ 생성을 피할 수 없었으며, 이 미반응 물질들은 고온에서 $BaTi_2O_5$를 생성시켜 불순물로 존재하였다. 농도를 높일수록 합성 $BaTiO_3$ 분말의 크기는 작아졌으며, 분말의 Ba/Ti 비도 1에 접근하였다. 2.0M 이상의 농도에서는 $180^{\circ}C$, 2 h 반응에서 Ba/Ti 비는 $1{\pm}0.005$ 이였다.
본 연구에서는 기체 분리를 위한 제올라이트 세라믹 멤브레인 제조에 적합한 입자크기와 형상을 갖춘 나노크기의 제올라이트를 TPAOH : $SiO_2$ : $H_2O$의 적합한 조성으로 합성하였으며 그 특성을 분석하였다. 실리카 원으로는 TEOS, LUDOX AS-40, CAB-O-SIL을 사용하고, TPAOH와 함께 출발물질로 하여 특정 조성의 TPAOH, $SiO_2$, $H_2O$ gel을 합성하고, $NaH_2PO_4$ 및 다양한 산 염기를 결정화 촉진제로 사용하였다. 합성시간을 단축할 수 있는 방법의 일환으로 저온에서 2단계 온도 변화법을 적용한 수열합성법으로 TPA-Silicalite-1을 합성하였으며 XRD, SEM, BET, TGA 등을 사용하여 분석하였다. 그 결과, 2단계 온도 변화법을 사용하고, 결정화 촉진제로서 $NaH_2PO_4$를 사용하였을 때가 최적의 합성 조건으로 입자크기100 nm, 비표면적 $416m^2/g$의 TPA-Silicalite-1 분말을 제조할 수 있었다.
수열합성 장치를 이용하여 종자 결정이 도포된 알루미나 지지체 위에 제올라이트 박막을 합성하였다. X-선 회절 분석과 전자현미경 사진을 이용하여 반응기 내에 생성된 제올라이트 A 분말과 제올라이트 A박막의 생성과 전이 생성물에 대해 합성온도, 합성시간, 종자결정의 영향에 대해서 고찰하였다. 제올라이트 A박막의 생성은 지지체 표면에 도포된 종자 결정에서 치밀한 연속적인 박막이 형성된 다음 용해과정을 거쳐 결정의 크기가 큰 다결정 층을 형성하고, 최종적으로 소다라이트를 거쳐 무정형으로 진행하였다. 반면에 분말에서는 반응초기부터 소다라이트가 관찰되는데 고정된 제올라이트 A 박막과 다르게 결정주위의 공간적인 차이에 의해 소다라이트가 생성하기에 용이한 공간을 갖기 때문에 소다라이트가 쉽게 생성되는 것으로 생각된다. 합성온도가 높으면 짧은 시간 내에 전이 생성물을 거쳐 무정형으로 진행하였고 온도가 낮으면 합성 시간이 길고 피복도가 다소 낮은 제올라이트 A 박막을 얻었다. $120^{\circ}C$, 12시간에서 피복도가 높은 치밀한 제올라이트 A박막을 합성하였다.
ZrN nanoparticles were prepared by an exothermic reduction of $ZrCl_4$ with $NaN_3$ in the presence of NaCl flux in a nitrogen atmosphere. Using a solid-state combustion approach, we have demonstrated that the zirconium nitride nanoparticles synthesis process can be completed in only several minutes compared with a few hours for previous synthesis approaches. The chemistry of the combustion process is not complex and is based on a metathesis reaction between $ZrCl_4$ and $NaN_3$. Because of the low melting and boiling points of the raw materials it was possible to synthesize the ZrN phase at low combustion temperatures. It was shown that the combustion temperature and the size of the particles can be readily controlled by tuning the concentration of the NaCl flux. The results show that an increase in the NaCl concentration (from 2 to 13 M) results in a temperature decrease from 1280 to $750^{\circ}C$. ZrN nanoparticles have a high surface area (50-70 $m^2/g$), narrow pore size distribution, and nano-particle size between 10 and 30 nm. The activation energy, which can be extracted from the experimental combustion temperature data, is: E = 20 kcal/mol. The method reported here is self-sustaining, rapid, and can be scaled up for a large scale production of a transition metal nitride nanoparticle system (TiN, TaN, HfN, etc.) with suitable halide salts and alkali metal azide.
The ionic conductivity of cubic solid solutions in the system $Y_{2}O_{3}-ZrO_{2}$ prepared by SHS was examined. Conductivity-temperature data obtained at $1000^{\circ}C$ in atmosphere of low oxygen partial pressure ($10^{-40}$ atm) for $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions indicated that these materials could be reduced, the degree of reduction being related to the measuring electric field. At low impressed fields no reduction was observed. Thus, these conductivity data give a transference number for the oxygen ion in $Y_{2}O_{3}-ZrO_{2}$ cubic solid solutions greater than 0.99.
The effects of various temperature shifts on the kinetics of the humoral antibody response in oliver flounder, Paralichthys olivaceus, immunised with formalin-killed Edwardsiella tarda, were determined by measuring the antibody production in vivo and in vitro. When fish acclimated to a high temperature and immunised at that temperature were transferred to a lower temperature (22℃ to 12℃) at a various times after immunisation, the fish showed a weaker immune response than that achieved when the fish were kept at a high environmental temperature. However, in the converse experiment (12℃ to 22℃), the magnitude of the humoral immune response was recovered independent of the time of the transfer after immunisation at low temperature, even though the peak levels of each transferred group did not reach the level found in the positive control group that was maintained and immunised at a high environmental temperature. Hence, these studies provide some evidence that the potential for antibody production in B cells of oliver flounder immunized at high temperature is not impaired by subsequent exposure to low temperature.
Synthesis and dielectric properties of glass-ceramic composites with zinc borosilicate glass(here after ZBS glass) were investigated as functions of $ZnAl_2O_4$ phase synthesis method, glass addition (50~60 vol%) and sintering temperature ($600{\sim}950^{\circ}C$ for 2 hrs). The 50 vol% ZBS glass-$Al_2O_3$ and 60 vol% ZBS glass-$ZnAl_2O_4$ ensured successful sintering below $900^{\circ}C$. But the composition of 100-x-y vol% ZBS glass-x vol% $Al_2O_3-y$ vol% ZnO exhibited poor sinterability below $900^{\circ}C$ and the swelling phenomenon occurred in this composite with the large amount of ZBS glass. The sintering behavior of Glass-ceramic composites was affected by the crystallization of $ZnAl_2O_4$ which was formed by the reaction between ZBS glass and $Al_2O_3$. Dielectric constant (${\varepsilon}_r$), $Q{\times}f$ value and temperature coefficient of resonant frequency (${\tau}_f$) of the composite with 50 and 60 vol% ZBS glass contents demonstrated $ZBS-Al_2O_3({\varepsilon}_r=5.7)$, $ZBS-ZnAl_2O_4({\varepsilon}_r=5.8)$ which is applicable to substrate requiring an low dielectric properties.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.