• Title/Summary/Keyword: Low-temperature process

Search Result 3,247, Processing Time 0.031 seconds

Nanoparticle generation and growth in low temperature plasma process (저온 플라즈마 공정에서의 나노 미립자 생성 및 성장)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Particle and aerosol research
    • /
    • v.5 no.3
    • /
    • pp.95-109
    • /
    • 2009
  • A low temperature plasma process has been widely used for semiconductor fabrication and can also be applied for the preparation of solar cell, MEMS or NEMS, but they are notorious in the point of particle contamination. The nano-sized particles can be generated in the low temperature plasma process and they can induce several serious defects on the performance and quality of microelectronic devices and also on the cost of final products. For the preparation of high quality thin films of high efficiency by the low temperature plasma process, it is desirable to increase the deposition rate of thin films with reducing the particle contamination in the plasmas. In this paper, we introduced the studies on the generation and growth of nanoparticles in the low temperature plasmas and tried to introduce the recent interesting studies on nanoparticle generation in the plasma reactors.

  • PDF

Low Temperature Flip Chip Bonding Process

  • Kim, Young-Ho
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.09a
    • /
    • pp.253-257
    • /
    • 2003
  • The low temperature flip chip technique is applied to the package of the temperature-sensitive devices for LCD systems and image sensors since the high temperature process degrades the polymer materials in their devices. We will introduce the various low temperature flip chip bonding techniques; a conventional flip chip technique using eutectic Bi-Sn (mp: $138^{\circ}C$) or eutectic In-Ag (mp: $141^{\circ}C$) solders, a direct bump-to-bump bonding technique using solder bumps, and a low temperature bonding technique using low temperature solder pads.

  • PDF

Substrate Removal Characteristics for Low Temperature by Biological Activated Carbon (저온에서 생물활성탄의 기질제거특성)

  • Ryu, Seong Ho;Park, Chung Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.76-93
    • /
    • 1997
  • Activated carbon is widely used for the treatment of water, wastewater and other liquid wastes. Biological activated carbon (BAC) process is water and wastewater treatment process developed in the 1970's. In addition to activated carbon adsorption, biodegradation organic pollutants occurs in the BAC bed where a large amount of aerobic biomass grows. This results in a long operation time of the carbon before having to be regenerated and thus a low treatment cost. Although the BAC process has been widely used, its mechanisms have not been well understood, especially the relationship between biodegradation and carbon adsorption, whether these two reactions can promote each other or whether they just simultaneously exist in the BAC bed. Also, the phenomenon of bioregeneration has been confused that previously occupied adsorption sites appear to be made available through the actions of microorganisms. And that, because biological process is influenced by low temperature, the mechanism of the BAC process is also effected by temperature variation in our country of winter temperature near the freezing point. Therefore, the objective of this study examines closely the mechanism of the BAC process by temperature variation using phenol as substrate. From this study, biological activated carbon is good substrate removal better than non adsorbing materials (charcoal, sand) as temperature variation, especially low temperature(near $5^{\circ}C$).

  • PDF

Electrical Characteristics of Metal/n-InGaAs Schottky Contacts Formed at Low Temperature

  • 이홍주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.365-370
    • /
    • 2000
  • Schottky contacts on n-In$\_$0.53//Ga$\_$0.47//As have been made by metal deposition on substrates cooled to a temperature of 77K. The current-voltage and capacitance-voltage characteristics showed that the Schottky diodes formed at low temperature had a much improved barrier height compared to those formed at room temperature. The Schottky barrier height ø$\_$B/ was found to be increased from 0.2eV to 0.6eV with Ag metal. The saturation current density of the low temperature diode was about 4 orders smaller than for the room temperature diode. A current transport mechanism dominated by thermionic emission over the barrier for the low temperature diode was found from current-voltage-temperature measurement. Deep level transient spectroscopy studies exhibited a bulk electron trap at E$\_$c/-0.23eV. The low temperature process appears to reduce metal induced surface damage and may form an MIS (metal-insulator-semiconductor)-like structure at the interface.

  • PDF

Low Temperature Properties of Exchange-biased Magnetic Tunnel Junction

  • Lee, K. I.;J. G. Ha;S. Y. Bae;K. H. Shin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.325-326
    • /
    • 2000
  • Low temperature diagnosis was performed as a probe for the integrity of MTJ(Magnetic tunnel junction) process which is optimised for the given plasma oxidation condition. TMR ratio increased slowly with decreasing temperature than that expected from spin wave exitation theory〔1〕. Junction resistance (RJ) does not follow T$\^$-$\frac{1}{2}$/ law below 200 K, indicating another conduction path besides spin polarized tunneling is involved at low temperature. Temperature dependence of conductance dip and bias dependence of TMR with temperature are discussed, from which the quality of tunnel barrier and its formation process can be inferred.

  • PDF

Low-Temperature Poly-Si TFT Charge Trap Flash Memory with Sputtered ONO and Schottky Junctions

  • An, Ho-Myoung;Kim, Jooyeon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.187-189
    • /
    • 2015
  • A charge-trap flash (CTF) thin film transistor (TFT) memory is proposed at a low-temperature process (≤ 450℃). The memory cell consists of a sputtered oxide-nitride-oxide (ONO) gate dielectric and Schottky barrier (SB) source/drain (S/D) junctions using nickel silicide. These components enable the ultra-low-temperature process to be successfully achieved with the ONO gate stacks that have a substrate temperature of room temperature and S/D junctions that have an annealing temperature of 200℃. The silicidation process was optimized by measuring the electrical characteristics of the Ni-silicided Schottky diodes. As a result, the Ion/Ioff current ratio is about 1.4×105 and the subthreshold swing and field effect mobility are 0.42 V/dec and 14 cm2/V·s at a drain voltage of −1 V, respectively.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

Evaluation of Punching Process Variables Influencing Micro Via-hole Quality of LTCC Green Sheet (LTCC 기판의 미세 비아홀 펀칭 중 공정 변수의 영향 평가)

  • Baek S. W.;Rhim S. H.;Oh S. I.
    • Transactions of Materials Processing
    • /
    • v.14 no.3 s.75
    • /
    • pp.277-281
    • /
    • 2005
  • LTCC(Low temperature co-fired ceramic) is being recognized as a significant packaging material of electrical devices for the advantages such as relatively low temperature being needed for process, low conductor resistance and high printing resolution. In the process of LTCC electrical devices, the punched via-hole quality is one of the most important factors on the performance of the device. However, its mechanism is very complicated and optimization of the process seems difficult. In this paper, to clarify the process, via-hole punching experiments were carried out and the punched holes were examined in terms of their burr formation. The effects of thickness of PET sheet, ceramic sheet and punch-to- die clearance on via-hole quality were also discussed. Optimum process conditions are proposed and a factor $\kappa$ is introduced to express effect of the process variables.

Low-Temperature Plasma Enhanced Chemical Vapor Deposition Process for Growth of Graphene on Copper

  • Ma, Yifei;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.433-433
    • /
    • 2013
  • Graphene, $sp^2$-hybridized 2-Dimension carbon material, has drawn enormous attention due to its desirable performance of excellent properties. Graphene can be applied for many electronic devices such as field-effect transistors (FETs), touch screen, solar cells. Furthermore, indium tin oxide (ITO) is commercially used and sets the standard for transparent electrode. However, ITO has certain limitations, such as increasing cost due to indium scarcity, instability in acid and basic environments, high surface roughness and brittle. Due to those reasons, graphene will be a perfect substitute as a transparent electrode. We report the graphene synthesized by inductive coupled plasma enhanced chemical vapor deposition (ICP-PECVD) process on Cu substrate. The growth was carried out using low temperature at $400^{\circ}C$ rather than typical chemical vapor deposition (CVD) process at $1,000^{\circ}C$ The low-temperature process has advantage of low cost and also low melting point materials will be available to synthesize graphene as substrate, but the drawback is low quality. To improve the quality, the factor affect the quality of graphene was be investigated by changing the plasma power, the flow rate of precursors, the scenario of precursors. Then, graphene film's quality was investigated with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

A Low Voltage Bandgap Current Reference with Low Dependence on Process, Power Supply, and Temperature

  • Cheon, Jimin
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.8 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The minimum power supply voltage of a typical bandgap current reference (BGCR) is limited by operating temperature and input common mode range (ICMR) of a feedback amplifier. A new BGCR using a bandgap voltage generator (BGVG) is proposed to minimize the effect of temperature, supply voltage, and process variation. The BGVG is designed with proportional to absolute temperature (PTAT) characteristic, and a feedback amplifier is designed with weak-inversion transistors for low voltage operation. It is verified with a $0.18-{\mu}m$ CMOS process with five corners for MOS transistors and three corners for BJTs. The proposed circuit is superior to other reported current references under temperature variation from $-40^{\circ}C$ to $120^{\circ}C$ and power supply variation from 1.2 V to 1.8 V. The total power consumption is $126{\mu}W$ under the conditions that the power supply voltage is 1.2 V, the output current is $10{\mu}A$, and the operating temperature is $20^{\circ}C$.