• Title/Summary/Keyword: Low-temperature gasification

Search Result 51, Processing Time 0.031 seconds

Water Gas Shift Reaction Research of the Synthesis Gas for a Hydrogen Yield Increase (수소 수율 증가를 위한 합성가스의 수성가스전환 반응 연구)

  • Kim, Min-Kyung;Kim, Jae-Ho;Kim, Woo-Hyun;Lee, See-Hoon
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.9-14
    • /
    • 2009
  • Automobile Shredder Residue (ASR) is very appropriate in a gasification melting system. Gasification melting system, because of high reaction temperature over than $1,350^{\circ}C$, can reduce harmful materials. To use the gasification processes for hydrogen production, the high concentration of CO in syngas must be converted into hydrogen gas by using water gas shift reaction. In this study, the characteristics of shift reaction of the high temperature catalyst (KATALCO 71-5M) and the low temperature catalyst (KATALCO 83-3X) in the fixed - bed reactor has been determined by using simulation gas which is equal with the syngas composition of gasification melting process. The carbon monoxide composition has been decreased as the WGS reaction temperature has increased. And the occurrence quantity of the hydrogen and the carbon dioxide increased. When using the high temperature catalyst, the carbon monoxide conversion ratio ($1-CO_{out}/CO_{in}$) rose up to 95.8 from 55.6. Compared with average conversion ratio from the identical synthesis gas composition, the low temperature catalyst was better than the high temperature catalyst.

  • PDF

Comparative Modeling of Low Temperature Char-CO2 Gasification Reaction of Drayton Coal by Carbon Dioxide Concentration (이산화탄소 농도에 따른 드레이톤 탄의 저온 차-이산화탄소 가스화반응 모델링 비교)

  • Park, Ji Yun;Lee, Do Kyun;Hwang, Soon Cheol;Kim, Sang Kyum;Lee, Sang Heon;Yoon, Soo Kyung;Yoo, Ji Ho;Lee, Si Hyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • We investigated the effects of the concentration of carbon dioxide on the char-$CO_2$ gasification reaction under isothermal conditions of $850^{\circ}C$ using the Drayton coal. Potassium carbonate was used to improve the low-temperature gasification reactivity. The enhancement of carbon dioxide concentration increased the gasification rate of char, while gasification rate reached a saturated value at the concentration of 70%. The best $CO_2$ concentration for gasification is determined to be 70%. We compared the shrinking core model (SCM), volumetric reaction model (VRM) and modified volumetric reaction model (MVRM) of the gas-solid reaction models. The correlation coefficient values, by linear regression, of SCM are higher than that of VRM at low concentration. While the correlation coefficients values of VRM are higher than that of SCM at high concentration. The correlation coefficient values of MVRM are the highest than other models at all concentration.

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

Gasification of Crude Glycerin for Liquid Fuel Production (액체연료 생산을 위한 폐글리세린의 가스화 기술 개발)

  • Yoon, Sang-Jun;Ra, Ho-Won;Lee, See-Hoon;Choi, Young-Chan;Lee, Jae-Goo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.451-454
    • /
    • 2009
  • Production and application of biodiesel are expected to grow steadily in the coming years and thus output of its by-product, crude glycerin, will accordingly increase as well. In the present study, gasification of biodiesel by-product as a renewable energy was performed in an entrained flow gasifier to investigate the gasification performance with the operating conditions. Crude glycerin shows a high heating value of 6,000 kcal/kg and low ash and sulphur content. Gasification was conducted in a temperature range of $950\;{\sim}\;1500\;^{\circ}C$. The variation of syngas composition with excess air ratio of 0.17 ~ 0.7 for air or oxygen as a gasification agent was investigated. From the results, syngas heating value, carbon conversion and cold gas efficiency of more than $2500\;kcal/Nm^3$, 95% and 65% were achieved, respectively. The temperature dependency of syngas composition, carbon conversion, and cold gas efficiency shows a similar tendency to excess air ratio at the temperature corresponding to the excess air ratio. The $H_2/CO$ ratio of the product gas was varied from 1.25 to 0.7 with the excess air ratio and this gas composition was favorable for DME synthesis. The optimum excess air ratio for gasification of biodiesel by-product was evaluated to be an approximately 0.35 to 0.4. The present results indicate that crude glycerin can be utilized as a feedstock for gasification to make syngas.

  • PDF

The Effect on the Steam Gasification Reaction of Low-Rank Coal Mixed with Waste Catalysts (저급 석탄과 혼합한 폐촉매의 수증기 가스화 반응에 미치는 영향)

  • Kwak, Jaehoon;Seo, Seokjin;Lee, Sojung;Song, Bungho;Sohn, Jung Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.6
    • /
    • pp.647-653
    • /
    • 2012
  • We have investigated the kinetics and activity of waste catalysts for steam-lignite gasification. Waste catalysts I, II, III and reference $K_2CO_3$ were used and physical mixed with a coal. The gasification experiments were carried out with the low rank coal loaded with 1 wt% and 5 wt% catalyst at the temperature range from 700 to $900^{\circ}C$ using thermobalance reactor. It was observed that the carbon conversion reached almost 100% regardless of the kinds of catalysts at $900^{\circ}C$. The shortest time to reach the designated conversion was obtained for 1 wt% waste catalyst II and 5 wt% $K_2CO_3$ at $900^{\circ}C$. The gasification reaction rate constant increased with increasing the temperature. Highest rate constant was obtained with $K_2CO_3$ at $900^{\circ}C$. The lowest activation energy was 69.42 kJ/mol for 5 wt% waste catalyst II. The waste catalyst had an influence on the reduction of activation energy.

The Study of CO2 Gasification of Low Rank Coal Impregnated by K2CO3, Mn(NO3)2, and Ce(NO3)3 (저급석탄에 K2CO3와 Mn(NO3)2 및 Ce(NO3)3이 CO2-석탄 가스화 반응에 미치는 영향)

  • Park, SangTae;Choi, YongTaek;Shon, JungMin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.312-318
    • /
    • 2011
  • We have investigated the kinetics and catalytic activity of $CO_2$-lignite gasification with various metal precursors as catalysts. $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$ were used and impregnated on a coal using an evaporator. The gasification experiments were carried out with the low rank coal loaded with 5 wt% catalyst at the temperature range from $700{\sim}900^{\circ}C$ and atmospheric pressure with the $N_2-CO_2$ reactant gas mixture. The catalytic effect on the gasification rate of the low rank coal with $CO_2$ was determined by the thermogravimetric analyzer. It was observed that the low rank coal reached the complete carbon conversion regardless of the kinds of catalysts at $900^{\circ}C$ from the results of TGA. The catalytic activity was ranked as 5 wt% $K_2CO_3$ > 5 wt% $Mn(NO_3)_2$ > 5 wt% $Ce(NO_3)_3$ > Non-catalyst at $900^{\circ}C$. The gasification rate increased with increasing the temperature. The activation energy of the catalytic gasification with 5 wt% $K_2CO_3$ was 119.0 kJ/mol, which was the lowest among all catalysts.

Comparative Studies on K2CO3-based Catalytic Gasification of Samhwa Raw Coal and Its Ash-free Coal (삼화 원탄과 무회분탄의 촉매(K2CO3) 가스화 반응성 비교 연구)

  • Kong, Yongjin;Lim, Junghwan;Rhim, Youngjoon;Chun, Donghyuk;Lee, Sihyun;Yoo, Jiho;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.218-225
    • /
    • 2014
  • Catalytic gasification of raw coals at mild condition is not realized yet mainly due to deactivation of catalysts via their irreversible interaction with mineral matters in coal. In this work, the gasification behavior of ash-free coal (AFC) was compared with that of the parent raw coal. In order to modify the gasification conditions, the raw coal gasified with fixed variables (water supply, space velocity, temperature, catalysts) in a fixed bed reactor. When catalysts are added by physical mixing method with coal, $K_2CO_3$ was the most effective additives for steam gasification of coal. However, the activity of ash-free coal (AFC) was much less reactive than raw coal due to high temperature extraction in a 1-methylnaphthalene under 30bar at $370^{\circ}C$ for 1 h, almost removed oxygen functional groups, and increased carbonization. The addition of $K_2CO_3$ in AFC achieved higher conversion rate at low temperature ($700^{\circ}C$). At that time, the molar ratio of gases ($H_2/CO$ and $CO_2/CO$) was increased because of water-gas shift reaction (WGSR) by addition of catalysts. This shows that catalytic steam gasification of AFCs is achievable for economic improvement of gasification process at mild temperature.

A Study on the Water Gas Shift Reaction of RPF Syngas (RPF(Refuse plastic fuel) 합성가스의 수성가스 전환 반응 연구)

  • Roh, Seon Ah
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.12-18
    • /
    • 2021
  • The water-gas shift reaction is the subsequent step using steam for hydrogen enrichment and H2/CO ratio-controlled syngas from gasification. In this study, a water-gas shift reaction was performed using syngas from an RPF gasification system. The water-gas shift using a catalyst was performed in a laboratory-scale tube reactor with a high temperature shift (HTS) and a low temperature shift (LTS). The effects of the reaction temperature, steam/carbon ratio, and flow rate on H2 production and CO conversion were investigated. The operating temperature was 250-400℃ for the HTS system and 190-220℃ for the LTS system. Steam/carbon ratios were between 1.5 and 3.5, and the composition of reactant was CO : 40 vol%, H2 : 25 vol%, and CO2 : 25 vol%. The CO conversion and H2 production increased as the reaction temperature and steam/carbon ratio increased. The CO conversion and H2 production decreased as the flow rate increased due to reduced retention time in the catalyst bed.

Comparison of catalytic activity through gas-solid reaction models in CO2 gasification of lignite with alkali metal salts and iron sulfate (알칼리금속염과 철황산염을 촉매로 한 갈탄의 CO2 가스화반응에서 기체-고체 반응모델을 적용한 촉매활성의 비교)

  • Bungay, Vergel C.;Song, Byungho
    • Journal of Energy Engineering
    • /
    • v.23 no.1
    • /
    • pp.58-66
    • /
    • 2014
  • Catalytic gasification of a low rank coal- Inner Mongolian lignite has been carried out with carbon dioxide. The gasification reactions were performed in a thermogravimetric analyzer at temperatures of $600^{\circ}C$ to $900^{\circ}C$. The kinetic parameters were evaluated using three different gas-solids reaction models and the prediction ability of each model were compared. Among the models evaluated, the modified volumetric model was found to correlate best both the non-catalytic and catalytic gasification reactions. The theoretical models, homogeneous and shrinking-core models, were found to satisfactorily correlate gasification reactions for the non-catalytic and $FeSO_4$-catalyzed reactions. In case of alkali metal catalysts, the catalytic activity was mostly pronounced at a low temperature of $600^{\circ}C$ and observed to decrease by 50% as the temperature was increased to $700^{\circ}C$, and it remained nearly constant at temperature over $800^{\circ}C$. The order of catalytic activity was found to be: $K_2CO_3$ > $Na_2CO_3$ > $K_2SO_4$ > $FeSO_4$.

Steam Gasification of Coal and Petroleum Coke in a Thermobalance and a Fluidized Bed Reactor (열천칭과 유동층반응기에서 석탄과 Petroleum Coke의 수증기 가스화반응)

  • Ji, Keunho;Song, Byungho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.6
    • /
    • pp.1015-1020
    • /
    • 2012
  • Lignite of low rank coal and petroleum coke of high sulfur content can be high potential energy sources for coal gasification process because of their plentiful supply. The steam gasification of lignite, anthracite, and pet coke has been carried out in both an atmospheric thermobalance reactor and a lab-scale fludized bed reactor (0.02 m i.d. ${\times}$ 0.6 m height). The effects of gasification temperature ($600{\sim}900^{\circ}C$) and partial pressure of steam (0.15~0.95 atm) on the gasification rate and on the heating value of product gas have been investigated. The modified volumetric reaction model was applied to the experimental data to describe the behavior of carbon conversion, and to evaluate kinetic parameters of char gasification. The results shows that higher temperature bring more hydrogen in the product syngas, and thus increased gas heating value. The feed rate of steam is needed to be optimized because an excess steam input would lower the gasification temperature which results in a degradation of fuel quality. The rank of calorific value of the product gas was anthracite > lignite > pet coke. Their obtained calorific value at $900^{\circ}C$ with 95% steam feed were 10.0 > 6.9 > 5.7 $MJ/m^3$. This study indicates that lignite and pet coke has a potential in fuel gas production.