Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.312

The Study of CO2 Gasification of Low Rank Coal Impregnated by K2CO3, Mn(NO3)2, and Ce(NO3)3  

Park, SangTae (Department of Mineral Resources & Energy Eng., Chonbuk Nat'l Univ)
Choi, YongTaek (Department of Hydrogen & Fuel Cells Engineering, Chonbuk Nat'l Univ)
Shon, JungMin (Department of Mineral Resources & Energy Eng., Chonbuk Nat'l Univ)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 312-318 More about this Journal
Abstract
We have investigated the kinetics and catalytic activity of $CO_2$-lignite gasification with various metal precursors as catalysts. $K_2CO_3$, $Mn(NO_3)_2$, and $Ce(NO_3)_3$ were used and impregnated on a coal using an evaporator. The gasification experiments were carried out with the low rank coal loaded with 5 wt% catalyst at the temperature range from $700{\sim}900^{\circ}C$ and atmospheric pressure with the $N_2-CO_2$ reactant gas mixture. The catalytic effect on the gasification rate of the low rank coal with $CO_2$ was determined by the thermogravimetric analyzer. It was observed that the low rank coal reached the complete carbon conversion regardless of the kinds of catalysts at $900^{\circ}C$ from the results of TGA. The catalytic activity was ranked as 5 wt% $K_2CO_3$ > 5 wt% $Mn(NO_3)_2$ > 5 wt% $Ce(NO_3)_3$ > Non-catalyst at $900^{\circ}C$. The gasification rate increased with increasing the temperature. The activation energy of the catalytic gasification with 5 wt% $K_2CO_3$ was 119.0 kJ/mol, which was the lowest among all catalysts.
Keywords
low rank coal; lignite; gasification; $K_2CO_3$; char; $CO_2$;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 C. L. Spiro, D. W. Mckee, P. G. Kosky, and E. J. Lamby, e. J., Fuel, 62, 180 (1983).   DOI   ScienceOn
2 P. L. Walker, Jr., M. Shelef, and R. A. Anderson, Chemistry and Physics of Carbon, ed. P. L. Walker, 4, 287, Marcel Dekker, New York (1968).
3 D. W. Mckee, Fuel, 62, 170 (1983)   DOI   ScienceOn
4 A. Molina and F. Mondragon, Fuel, 77, 1831 (1998).   DOI   ScienceOn
5 N. Yasyerli, T. Dogu, G. Dogu, and I. Ar, Chem. Eng. Sci., 51, 2523 (1996).   DOI   ScienceOn
6 L. Zhang, J. Huang, Y. Fang, and Y. Wang, Energy Fuels, 20, 1201 (2006).   DOI   ScienceOn
7 H. Liu, C. Luo, M. Toyota, S. Kato, S. Uemiya, T. Kojima, and H. Tominaga, Fuel, 82, 523 (2003).   DOI   ScienceOn
8 D. H. Ahn, B. M. Gibbs, K. H. Ko, and J. J. Kim, Fuel, 80, 1651 (2001).   DOI   ScienceOn
9 S. Kajitani, N. Suzuki, M. Ashizawa, and S. Hara, Fuel, 85, 163 (2006).   DOI   ScienceOn
10 H. Liu, M. Kaneko, C. Luo, S. Kato, and T. Kojima, Fuel, 83, 1055 (2004).   DOI   ScienceOn
11 D. P. Ye, J. B. Agnew, and D. K. Zhang, Fuel, 77, 1209 (1998).   DOI   ScienceOn
12 S. Kajitani, S. Hara, and H. Matsuda, Fuel, 81, 539 (2002).   DOI   ScienceOn
13 S. Kasaoka, Y. Sakata, and C. Tong, Int. Chem. Eng., 25, 160 (1985).
14 W. Y. Wen, Catal. Rev., 22, 1 (1980).   DOI
15 B. J. Wood, R. H. Fleming, and H. Wise, Fuel, 63, 1600 (1984).   DOI   ScienceOn
16 L. Zhang, J. Huang, Y. Fang, and Y. Wang, Energy & Fuels, 20, 1201 (2006).   DOI   ScienceOn
17 B. H. Song and S. D. Kim, Fuel, 72, 797 (1993).   DOI   ScienceOn
18 S. Li and Y. Cheng, Fuel, 74, 456 (1995).   DOI   ScienceOn