• Title/Summary/Keyword: Low-temperature bonding

Search Result 303, Processing Time 0.029 seconds

Annealing Characteristics of Ultrafine Grained AA1050/AA5052 Complex Aluminum Alloy Sheet Fabricated by Accumulative Roll-Bonding (반복겹침접합 압연공정에 의해 제조한 초미세립 AA1050/AA5052 복합알루미늄합금판재의 어닐링 특성)

  • Lee, Seong-Hee;Lee, Gwang-Jin
    • Korean Journal of Materials Research
    • /
    • v.21 no.12
    • /
    • pp.655-659
    • /
    • 2011
  • An ultrafine grained complex aluminum alloy was fabricated by an accumulative roll-bonding (ARB) process using dissimilar aluminum alloys of AA1050 and AA5052 and subsequently annealed. A two-layer stack ARB process was performed up to six cycles without lubricant at an ambient temperature. In the ARB process, the dissimilar aluminum alloys, AA1050 and AA5052, with the same dimensions were stacked on each other after surface treatment, rolled to the thickness reduction of 50%, and then cut in half length by a shearing machine. The same procedure was repeated up to six cycles. A sound complex aluminum alloy sheet was fabricated by the ARB process, and then subsequently annealed for 0.5h at various temperatures ranging from 100 to $350^{\circ}C$. The tensile strength decreased largely with an increasing annealing temperature, especially at temperatures of 150 to $250^{\circ}C$. However, above $250^{\circ}C$ it hardly decreased even when the annealing temperature was increased. On the other hand, the total elongation increased greatly above $250^{\circ}C$. The hardness exhibited inhomogeneous distribution in the thickness direction of the specimens annealed at relatively low temperatures, however it had a homogeneous distribution in specimens annealed at high temperatures.

Evaluation of Environmental Fatigue Strength in Adhesive Bonding of Different Materials (이종재료 접착제 접합부의 환경 피로강도 평가)

  • 임재규;이중삼;윤호철;유성철
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.99-105
    • /
    • 2002
  • One of the important advantage of adhesive bonded joint can combine the different materials. The joint that bonded by structural adhesive bond must keep a large force and its strength is affected by some environmental factors such as temperature and submergence time in water. In order to advance the fatigue strength of adhesive bonded joint, mostly put a surface treatment on the surface. This study was researched the effect of air temperature, submergence time, submergence temperature and surface treatment on the fatigue strength. We found that submergence temperature has the most effect and low plasma treatment specimens have the most fatigue strength.

Characterizing Residual Stress of Post-Heat Treated Ti/Al Cladding Materials Using Nanoindentation Test Method (나노압입시험법을 이용한 후열처리된 Ti/Al 클래딩재의 잔류 응력 평가)

  • Sang-Kyu Yoo;Ji-Won Kim;Myung-Hoon Oh;In-Chul Choi
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.61-68
    • /
    • 2023
  • Ti and Ti alloys are used in the automobile and aerospace industries due to their high specific strength and excellent corrosion resistance. However their application is limited due to poor formability at room temperature and high unit cost. In order to overcome these issues, dissimilarly jointed materials, such as cladding materials, are widely investigated to utilize them in each industrial field because of an enhanced plasticity and relatively low cost. Among various dissimilar bonding processes, the rolled cladding process is widely used in Ti alloys, but has a disadvantage of low bonding strength. Although this problem can be solved through post-heat treatment, the mechanical properties at the bonded interface are deteriorated due to residual stress generated during post-heat treatment. Therefore, in this study, the microstructure change and residual stress trends at the interfaces of Ti/Al cladding materials were studied with increasing post-heat treatment temperature. As a result, compared to the as-rolled specimens, no difference in microstructure was observed in the specimens after postheat treatment at 300, 400, and 500℃. However, a new intermetallic compound layer was formed between Ti and Al when post-heat treatment was performed at a temperature of 600℃ or higher. Then, it was also confirmed that compressive residual stress with a large deviation was formed in Ti due to the difference in thermal expansion coefficient and modulus of elasticity between Ti Grade II and Al 1050.

Effect of Sintering Atmosphere Changing Temperature on Microstructure and Mechanical Property of Al2O3/Cu Nanocomposites (소결분위기 변환온도가 Al2O3/Cu 나노복합재료의 미세조직과 파괴강도에 미치는 영향)

  • Oh Sung-Tag;Yoon Se-Joong
    • Journal of Powder Materials
    • /
    • v.11 no.5
    • /
    • pp.421-426
    • /
    • 2004
  • The microstructure and mechanical property of hot-pressed $Al_2O_3/Cu$ composites with a different temperature for atmosphere changing from H$_{2}$ to Ar have been studied. When atmosphere-changed from H$_{2}$ to Ar gas at 145$0^{\circ}C$, the hot-pressed composite was characterized by inhomogeneous microstructure and low fracture strength. On the contrary, when atmosphere-changed at low temperature of 110$0^{\circ}C$ the composite showed more homogeneous microstructure, higher fracture strength and smaller deviation in strength. Based on the thermodynamic consideration and microstructural analysis, it was interpreted that the Cu wetting behavior relating to the formation of CuAlO$_{2}$ is probably responsible for strong dependence of microstructure on atmosphere changing temperature. The reason for a strong sensitivity of fracture strength and especially of its deviation to atmosphere changing temperature was explained by the microstructural inhomogeneity and by the role of CuAlO$_{2}$ phase on the interfacial bonding strength.

Properties of Deep Eutectic Solvents (DESs) and Their Applications (깊은 공융 용매 (DESs) 물성과 응용)

  • Seo, Ho Seong;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.43-48
    • /
    • 2015
  • Deep eutectic solvents (DESs) are now broadly understood as a new kind of ionic liquid (IL) because they exhibit many characteristics and properties similar with ILs. The DESs made of quaternary ammonium salt blended with one of hydrogen bonding donor (HBD) compounds behave as ILs even at very low temperature. In this study, properties such as density, viscosity, surface tension, conductivity, and electrochemical behavior of DESs were reported and their applications were reviewed. Study on DESs has been drawn attention on application in metal finishing, but these solvents can be used in a variety of synthesis, and their potentials have been demonstrated in various areas. DESs are expected to offer applicability by extending the types of salts and hydrogen bond donor mixtures.

Fabrication & Properties of Field Emitter Arrays using the Mold Method for FED Application (Mold 법에 의해 제작된 FED용 전계에미터어레이의 특성 분석)

  • ;;;;K. Oura
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.347-350
    • /
    • 2001
  • A typical Mold method is to form a gate electrode, a gate oxide, and emitter tip after fabrication of mold shape using wet-etching of Si substrate. In this study, however, new Mold method using a side wall space structure is used in order to make sharper emitter tip with a gate electrode. Using LPCVD(low pressure chemical vapor deposition), a gate oxide and electrode layer are formed on a Si substrate, and then BPSG(Boro phospher silicate glass) thin film is deposited. After, the BPSG thin film is flowed into a mold as high temperature in order to form a sharp mold structure. Next TiN thin film is deposited as a emitter tip substance. The unfinished device with a glass substrate is bonded by anodic bonding techniques to transfer the emitters to a glass substrate, and Si substrate is etched using KOH-deionized water solution. Finally, we made sharp field emitter array with gate electrode on the glass substrate.

  • PDF

A Study on Reliability of Solder Joint in Different Electronic Materials (이종 전자재료 JO1NT 부위의 신뢰성에 관한 연구)

  • 신영의;김경섭;김형호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.49-54
    • /
    • 1993
  • This paper discusses the reliability of solder joints of electronic devices on printed circuit board. Solder application is usually done by screen printing method for the bonding between outer leads of devices and thick film(Ag/Pd) pattern on Hybrid IC as wel1 as Cu lands on PCB. As result of thermal stresses generated at the solder joints due to the differences of thermal expansion coefficients between packge body and PCB, Micro cracking often occurs due to thermal fatigue failure at solder joints. The initiation and the propagate of solder joint crack depends on the environmental conditions, such as storage temperature and thermal cycling. The principal mechanisms of the cracking pheno- mana are the formation of kirkendal void caused by the differences in diffusion rate of materials, ant the thermal fatigue effect due to the differences of thermal expansion coefficient between package body and PCB. Finally, This paper experimentally shows a way to supress solder joints cracks by using low-${\alpha}$ PCB and the packages with thin lead frame, and investigates the phenomena of diffusion near the bonding interfaces.

  • PDF

Spray Coating Technology (스프레이 코팅 기술)

  • Lee, Chang-Hee
    • Journal of ILASS-Korea
    • /
    • v.13 no.4
    • /
    • pp.193-199
    • /
    • 2008
  • Spray coating is a versatile surface modification technology in which coating is built-up based on the successive deposition of micron-scaled particles. Depending on the coating materials, the coatings can meet the required mechanical properties, corrosion resistance, and other properties of base materials. Spraying processes are mainly classified into thermal and kinetic spraying according to their bonding mechanism and deposition characteristics. Specifically, thermal spraying process can be further classified into many categories based on the design and mechanism of the process, such as frame spraying, arc spraying, atmospheric plasma spraying (APS), and high velocity oxygen-fuel (HVOF) spraying, etc. Kinetic spraying or cold gas dynamic spraying is a newly emerging coating technique which is low-temperature and high-pressure coating process. In this paper, overall view of thermal and kinetic spray coating technologies is discussed in terms of fundamentals and industrial applications. The technological characteristics and bonding mechanism of each process are introduced. Deposition behavior and properties of technologically remarkable materials are reviewed. Furthermore, industrial applications of spray coating technology and its potentials are prospected.

  • PDF

Effects of Composition of Substrate on Transverse Rupture Strength and Bonding Strength of Cemented Carbide Coated with Titanium Carbide by CVD Process (화학흡착(CVD)법에 의한 TiC 흡착 시 모재가 피복 길항합금의 항면력 및 접착력에 미치는 영향)

  • Lee, Geon-U;O, Jae-Hyeon
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.8-8
    • /
    • 1991
  • To investigate the effects of substrate on transverse-rupture strength(TRS) and bonding strength between substrate and TiC layer coated by CVD, two kinds of substrate (substrate A:WC-9.5wt%Co-MC*[low C], substrate B: WC-6wt% Co-MC*[high C] were studied in terms of Cobalt and C contents respectively. For preparation of test samples the coating parameters of deposition time, deposition temperature and deposition pressure were varied. The result show that the carbon contents in substrates have greater effects on the TRS of the CVD TiC coated cemented carbide than Co contents in substrates.

Can design for Blisk of Nickel-base Superalloy Powder (분말합금을 이용한 블리스크 제조용 캔 설계)

  • Lim J. S.;Yeom J. T.;Kwon Y. S.;Park N. K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.171-174
    • /
    • 2004
  • Superalloys with many strengthening alloying elements are frequently used in powder form to alleviate harmful effects of alloy segregation. HIP (hot isostatic pressing) and DB (diffusion bonding) as a form of solid-state bonding process is often used to make turbine components, such as integrated turbine rotors. HIP/DB process requires many technical overcomes related to dimensional changes as well as microstructural control. In this research, HIP/DB process for nickel base superalloys, Udimet 720, were investigated with a view to control the dimensional change during the consolidation process. Simple disc-shaped cans were used to select the conceptual die design for the control of the dimensional change especially in radial direction. The change in the shape of consolidated shape was investigated using commercial FE code with constitutive equations for low temperature plasticity and creep deformation.

  • PDF