DOI QR코드

DOI QR Code

Characterizing Residual Stress of Post-Heat Treated Ti/Al Cladding Materials Using Nanoindentation Test Method

나노압입시험법을 이용한 후열처리된 Ti/Al 클래딩재의 잔류 응력 평가

  • Sang-Kyu Yoo (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Ji-Won Kim (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • Myung-Hoon Oh (School of Materials Science and Engineering, Kumoh National Institute of Technology) ;
  • In-Chul Choi (School of Materials Science and Engineering, Kumoh National Institute of Technology)
  • 유상규 (금오공과대학교 신소재공학과) ;
  • 김지원 (금오공과대학교 신소재공학과) ;
  • 오명훈 (금오공과대학교 신소재공학과) ;
  • 최인철 (금오공과대학교 신소재공학과)
  • Received : 2023.01.12
  • Accepted : 2023.02.10
  • Published : 2023.03.30

Abstract

Ti and Ti alloys are used in the automobile and aerospace industries due to their high specific strength and excellent corrosion resistance. However their application is limited due to poor formability at room temperature and high unit cost. In order to overcome these issues, dissimilarly jointed materials, such as cladding materials, are widely investigated to utilize them in each industrial field because of an enhanced plasticity and relatively low cost. Among various dissimilar bonding processes, the rolled cladding process is widely used in Ti alloys, but has a disadvantage of low bonding strength. Although this problem can be solved through post-heat treatment, the mechanical properties at the bonded interface are deteriorated due to residual stress generated during post-heat treatment. Therefore, in this study, the microstructure change and residual stress trends at the interfaces of Ti/Al cladding materials were studied with increasing post-heat treatment temperature. As a result, compared to the as-rolled specimens, no difference in microstructure was observed in the specimens after postheat treatment at 300, 400, and 500℃. However, a new intermetallic compound layer was formed between Ti and Al when post-heat treatment was performed at a temperature of 600℃ or higher. Then, it was also confirmed that compressive residual stress with a large deviation was formed in Ti due to the difference in thermal expansion coefficient and modulus of elasticity between Ti Grade II and Al 1050.

Keywords

Acknowledgement

본 연구는 금오공과대학교의 학술 연구비 지원사업으로 수행되었습니다(202001500001).

References

  1. G. Welsch, R. Boyer, and E. W. Collings : Materials properties handbook: titanium alloys, ASM international, OH, (1993) 3-122.
  2. G. Lutjering and J. C. Williams : Titanium matrix composites, Springer, New York, (2007) 4-48.
  3. N. Munroe, X. Tan, and H. Gu : Scr. Mater., 36, (1997) 1383-1386. https://doi.org/10.1016/S1359-6462(97)00048-1
  4. J. Liu, M. Dahmen, V. Ventzke, N. Kashaev, and R. Poprawe : Intermetallics, 40 (2013) 65-70. https://doi.org/10.1016/j.intermet.2013.04.007
  5. W. Lee, Y. Kim, and S. Jung : Intermetallics, 12 (2004) 671-678. https://doi.org/10.1016/j.intermet.2004.02.004
  6. Y. Nakao, K. Shinozaki, and M. Hamada : ISIJ Int., 31 (1991) 1260-1266. https://doi.org/10.2355/isijinternational.31.1260
  7. A. Lasalmonie : Intermetallics, 14 (2006) 1123-1129. https://doi.org/10.1016/j.intermet.2006.01.064
  8. M. C. Chaturvedi, Q. Xu, and N. L. Richards : J. Mater. Process. Technol., 118 (2001) 74-78. https://doi.org/10.1016/S0924-0136(01)00870-6
  9. Y. S. Cai, R. C. Liu, H. B. Ji, Y. Y. Cui, and R. Yang : Intermetallics, 136 (2021) 107274. https://doi.org/10.1016/j.intermet.2021.107274
  10. W. B. Lee, M. Kim, J. Koo, K. Kim, D. J. Quesnel, K. Young-Jig, and S. Jung : J. Mater. Sci., 39 (2004) 1125-1128. https://doi.org/10.1023/B:JMSC.0000012960.59095.5a
  11. Y. Kim, J. Lee, G. Lee, and S. Lee : Trends in Metals & Materials Engineering, 24 (2011) 24-30.
  12. R. Jamaati and M. R. Toroghinejad : J. Mater. Sci. Eng. A, 527 (2010) 2320-2326. https://doi.org/10.1016/j.msea.2009.11.069
  13. H. A. Khan, K. Asim, F. Akram, A. Hameed, A. Khan, and B. Mansoor : Metals, 11 (2021) 1344.
  14. L. Li, K. Nagai, and F. Yin : Sci. Technol. Adv. Mater., 9 (2008) 023001.
  15. Y. H. Lee, J. I. Jang, and D. I. Kwon : Transactions of the Korean Society of Mechanical Engineers A, 26 (2002) 1270-1279. https://doi.org/10.3795/KSME-A.2002.26.7.1270
  16. Y. Lee and D. Kwon : Acta Mater., 52 (2004) 1555-1563. https://doi.org/10.1016/j.actamat.2003.12.006
  17. S. Suresh, A. E. Giannakopoulos : Acta Mater., 46 (1998) 5755-5767. https://doi.org/10.1016/S1359-6454(98)00226-2
  18. Y. H. Lee and D. Kwon : Acta Mater., 52 (2004) 1555-1563. https://doi.org/10.1016/j.actamat.2003.12.006
  19. Q. Wang, K. Ozaki, H. Ishikawa, S. Nakano, and H. Ogiso : Nucl. Instrum. Methods Phys. Res. B, 242 (2006) 88-92. https://doi.org/10.1016/j.nimb.2005.08.008
  20. L. Xu, Y. Y. Cui, Y. L. Hao, and R. Yang : J. Mater. Sci. Eng. A, 435 (2006) 638-647. https://doi.org/10.1016/j.msea.2006.07.077
  21. U. R. Kattner, J. Lin, and Y. A. Chang : e Ti-Al system, Metallurgical Transactions A, 23 (1992) 2081-2090. https://doi.org/10.1007/BF02646001
  22. Y. Sun, Z. Wan, L. Hu, and J. Ren : Mater. Des., 86 (2015) 922-932. https://doi.org/10.1016/j.matdes.2015.07.140
  23. L. M. Peng, J. H. Wang, H. Li, J. H. Zhao, and L. H. He : Scr. Mater., 52 (2005) 243-248. https://doi.org/10.1016/j.scriptamat.2004.09.010
  24. Y. Mishin and C. Herzig : Acta Mater., 48 (2000) 589- 623. https://doi.org/10.1016/S1359-6454(99)00400-0
  25. M. Mirjalili, M. Soltanieh, K. Matsuura, and M. Ohno : Intermetallics, 32 (2013) 297-302. https://doi.org/10.1016/j.intermet.2012.08.017
  26. A. H. Assari and B. Eghbali : J. Alloys. Compounds., 773 (2019) 50-58. https://doi.org/10.1016/j.jallcom.2018.09.253
  27. L. F. Mondolfo : Aluminum alloys: structure and properties, Elsevier, Amsterdam, (2013) 56-95.
  28. B. Han : Exp. Mech., 38 (1998) 278-288.
  29. B. Han : Journal of Thermal Stresses, 26 (2003) 583-613. https://doi.org/10.1080/713855954
  30. J. Carvill, Mechanical engineer's data handbook, Elsevier, Amsterdam, (1994) 288-308.
  31. Z. Li, L. Fu, B. Fu, and A. Shan : J. Mater. Sci. Eng. A, 558 (2021) 309-318. https://doi.org/10.1016/j.msea.2012.08.005
  32. M. Nakamura and K. Kimura : J. Mater. Sci., 26 (1991) 2208-2214. https://doi.org/10.1007/BF00549190