• Title/Summary/Keyword: Low-temperature Technique

Search Result 772, Processing Time 0.033 seconds

Effects of Strain Rate and Temperature on Fracture Strength of Ceramic/Metal Joint Brazed with Ti-Ag-Cu Alloy

  • Seo, Do-Won;Lim, Jae-Kyoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1078-1083
    • /
    • 2002
  • Ceramics are significantly used in many industrial applications due to their excellent mechanical and thermal properties such as high temperature strength, low density, high hardness, low thermal expansion, and good corrosion resistive properties, while their disadvantages are brittleness, poor formability and high manufacturing cost. To combine advantages of ceramics with those of metals, they are often used together as one composite component, which necessiates reliable joining methods between metal and ceramic. Direct brazing using an active filler metal has been found to be a reliable and simple technique, producing strong and reliable joints. In this study, the fracture characteristics of Si$_3$N$_4$ ceramic joined to ANSI 304L stainless steel with a Ti-Ag-Cu filler and a Cu (0.25-0.3 mm) interlayer are investigated as a function of strain rate and temperature. In order to evaluate a local strain a couple of strain gages are pasted at the ceramic and metal sides near joint interface. As a result the 4-point bending strength and the deflection of interlayer increased at room temperature with increasing strain rate. However bending strength decreased with temperature while deflection of interlayer was almost same. The fracture shapes were classified into three groups ; cracks grow into the metal-brazing filler line, the ceramic-brazing filler line or the ceramic inside.

A Study on Anti-Icing Technique for Weather-Tight Door of Ice-Strengthened Vessels (내빙선박용 풍우밀 문의 결빙방지 기법 연구)

  • Jeong, Seong-Yeob;Chun, Eun-Ji;Cho, Seong-Rak;Lee, Chun-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.6
    • /
    • pp.575-580
    • /
    • 2011
  • Icing problem of ice-strengthened vessels is an important issue when operating in low temperature environment and it can cause damage to deck machineries and emergency equipments. Many ice-strengthened vessels have since been constructed and operated in accordance with the ice class rules such as Det Norske Veritas (DNV), Russian Maritime Register of Shipping (RS), American Bureau of Shipping (ABS) and so on. Therefore winterization is defined as the preparation of a ship for safe operation. In this research, anti-icing performance tests of weather-tight door have been carried out at various temperature conditions($5^{\circ}C$, $-10^{\circ}C$, $-20^{\circ}C$, $-30^{\circ}C$, $-40^{\circ}C$) in the low temperature cold room facility and then, ambient temperature, specimen temperature, electric current and temperature of heating cable were measured during the test operations. This research describes the construction guidelines of weather-tight door based on anti-icing test results to apply to the full-scale vessels.

Measurements of Thermal Diffusivity of Heavy Rolled Low Carbon Steel Plate With Laser Flash Technique (레이저 섬광법에 의한 압연된 저탄소강 판재의 열확산계수 측정)

  • 배신철;임동주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.157-171
    • /
    • 1990
  • The heat transfer problem associated with pulse technique for measuring thermal diffusivity was solved by means of Green function. The obtained general solution was discussed so as to apply for all possible cases; kinds of boundary condition and heat source, irradiation positions of heat pulse, radius of heat pulse, one-and two-dimensional heat flow, finite pulse time effects and radiation heat loss systems. Experimentally, the laser flash lamp was used as heat source for measuring thermal diffusivity of low carbon, aluminium chilled steel plate, which was heavily rolled in order to measure the variation of thermal diffusivity in the temperature range from room temperature through 500.deg. C. The derived results are (1) materials produced from same furnace showed a somewhat different thermal diffusivity values. (2) the thermal diffusivity value of rolled material was smaller than unrolled material and the difference decreased as increasing temperature. (3) the thermal diffusivity value of an annealed and temper rolled material was larger than the value of a cold rolled material, even thought smaller than unrolled material. (4) In case of heavy rolled material, there was no consistent relationships between the thermal diffusivity and the reduction in thickness.

Electrical and Optical Properties of Solution-Based Sb-Doped SnO2 Transparent Conductive Oxides Using Low-Temperature Process (저온 공정을 이용한 용액 기반 Sb-doped SnO2 투명 전도막의 전기적 및 광학적 특성)

  • Koo, Bon-Ryul;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.24 no.3
    • /
    • pp.145-151
    • /
    • 2014
  • Solution-based Sb-doped $SnO_2$ (ATO) transparent conductive oxides using a low-temperature process were fabricated by an electrospray technique followed by spin coating. We demonstrated their structural, chemical, morphological, electrical, and optical properties by means of X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, Hall effect measurement system, and UV-Vis spectrophotometry. In order to investigate optimum electrical and optical properties at low-temperature annealing, we systemically coated two layer, four layer, and six layers of ATO sol-solution using spin-coating on the electrosprayed ATO thin films. The resistivity and optical transmittance of the ATO thin films decreased as the thickness of ATO sol-layer increased. Then, the ATO thin films with two sol-layers exhibited superb figure of merit compared to the other samples. The performance improvement in a low temperature process ($300^{\circ}C$) can be explained by the effect of enhanced carrier concentration due to the improved densification of the ATO thin films causing the optimum sol-layer coating. Therefore, the solution-based ATO thin films prepared at $300^{\circ}C$C exhibited the superb electrical (${\sim}7.25{\times}10^{-3}{\Omega}{\cdot}cm$) and optical transmittance (~83.1 %) performances.

Synchrotron Radiation Induced Photochemical Reactions for Semiconductor Processes

  • Rhee, Shi-Woo
    • Journal of the Korean Vacuum Society
    • /
    • v.3 no.2
    • /
    • pp.147-157
    • /
    • 1994
  • Valence or core electron excitations induced by Synchrotron radiation (SR) irradiation and ensuing chemical reactions can be applied for semiconductor processes i, e, deposition etching and modifications of thin film materials. Unique selectivity can be achieved by this photochemical reactions in deposition and etching. Some materials can be ecvaporated by SR irradiation which can be utilized for low temperature surface cleaning of thin films. Also SR irradiation significantly lowers the reaction temperature and photon activated surface reactions can be utilized for direct writing or projection lithography of electronic materials. This technique is especially effective in making nanoscale feature size with abrupt and well defined interfaces for next generation electronic devices.

  • PDF

High Temperature Lubrication with Phosphate Esters

  • Hanyaloglu, Bengi
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.177-183
    • /
    • 1995
  • Recent work with phosphate esters has shown that a lubricious polymeric film can formed from the vapor phase on interacting during and sliding. This lubrication technique has led to methods to reduce friction and wear to very low values at high temperatures up to 700$^{\circ}$C. Preliminary with synthetic tri aryl phosphates are very promising. The vaporized lubricant forms a polymeric film on the sliding and rolling surfaces reducing the coefficient of friction below 0.05. In-situ formation of the polymeric films shows that the polymer that is formed on the surface exists in different states depending on surface temperature.

Surface Temperature Measurements in Microscale with Temperature Sensitive Fluorescence (온도 민감 형광을 이용한 마이크로 스케일 표면온도 측정)

  • Jung, Woon-Seop;Kim, Sung-Wook;Kim, Ho-Young;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1225-1230
    • /
    • 2004
  • The effects of substrate material on the local heating performance of microheaters are studied by both numerical analysis and experiment. Transient conduction analysis shows that the substrate material with low thermal conductivity is critical to the local heating and fast response. A measurement technique for surface temperature field in microscale is newly proposed, which uses temperature sensitive fluorescent dye coated on the surface. The measured surface temperature fields on microheater arrays fabricated on different substrates are presented.

  • PDF