• Title/Summary/Keyword: Low-power protocol communication

Search Result 172, Processing Time 0.023 seconds

Performance Evaluation of a Smart CoAP Gateway for Remote Home Safety Services

  • Kim, Hyun-Sik;Seo, Jong-Su;Seo, Jeongwook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3079-3089
    • /
    • 2015
  • In this paper, a smart constrained application protocol (CoAP)-based gateway with a border router is proposed for home safety services to remotely monitor the trespass, fire, and indoor air quality. The smart CoAP gateway controls a home safety sensor node with a pyroelectric infrared motion sensor, a fire sensor, a humidity and temperature sensor, and a non-dispersive infrared CO2 sensor and gathers sensing data from them. In addition, it can convert physical sensing data into understandable information and perform packet conversion as a border router for seamless connection between a low-power wireless personal area network (6LoWPAN) and the Internet (IPv6). Implementation and laboratory test results verify the feasibility of the smart CoAP gateway which especially can provide about 97.20% data throughput.

Implementation and Measurement of Spectrum Sensing for Cognitive Radio Networks Based on LoRa and GNU Radio

  • Tendeng, Rene;Lee, YoungDoo;Koo, Insoo
    • International journal of advanced smart convergence
    • /
    • v.7 no.3
    • /
    • pp.23-36
    • /
    • 2018
  • In wireless communication, efficient spectrum usage is an issue that has been an attractive research area for many technologies. Recently new technologies innovations allow compact radios to transmit with power efficient communication over very long distances. For example, Low-Power Wide Area Networks (LPWANs) are an attractive emerging platform to connect the Internet-of-Things (IoT). Especially, LoRa is one of LPWAN technologies and considered as an infrastructure solution for IoT. End-devices use LoRa protocol across a single wireless hop to communicate to gateway(s) connected to the internet which acts as a bridge and relays message between these LoRa end-devices to a central network server. The use of the (ISM) spectrum sharing for such long-range networking motivates us to implement spectrum sensing testbed for cognitive radio network based on LoRa and GNU radio. In cognitive radio (CR), secondary users (SUs) are able to sense and use this information to opportunistically access the licensed spectrum band in absence of the primary users (PUs). In general, PUs have not been very receptive of the idea of opportunistic spectrum sharing. That is, CR will harmfully interfere with operations of PUs. Subsequently, there is a need for experimenting with different techniques in a real system. In this paper, we implemented spectrum sensing for cognitive radio networks based on LoRa and GNU Radio, and further analyzed corresponding performances of the implemented systems. The implementation is done using Microchip LoRa evolution kits, USRPs, and GNU radio.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

Hibernation Structure Design of Wireless USB over IEEE 802.15.6 Hierarchical MAC Protocol (WUSB over IEEE 802.15.6 통합 MAC 프로토콜의 Hibernation 구조 설계)

  • Hur, Kyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1610-1618
    • /
    • 2014
  • Wearable computer systems can use the wireless universal serial bus (WUSB) that refers to USB technology that is merged with WiMedia PHY/MAC technical specifications. In this paper, we focus on an integrated system of the wireless USB over the IEEE 802.15.6 wireless body area networks (WBAN) for wireless wearable computer systems supporting U-health services. And a communication structure that performs the hibernation for low power consumption is proposed for WUSB over IEEE 802.15.6 hierarchical protocol. In the proposed hibernation mechanisms, WUSB communications are permitted at each m-periodic inactive periods of WBAN superframes by using the WBAN information of Wakeup Period and Wakeup Phase message fields. In our performance evaluations, performances according to amount of WUSB traffic and Wakeup Periods are analyzed respectively to evaluate the effectiveness of proposed hibernation structure in WUSB over IEEE 802.15.6.

A routing protocol based on Context-Awareness for Energy Conserving in MANET

  • Chen, Yun;Lee, Kang-Whan
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.2
    • /
    • pp.104-108
    • /
    • 2007
  • Ad hoc networks are a type of mobile network that function without any fixed infrastructure. One of the weaknesses of ad hoc network is that a route used between a source and a destination is to break during communication. To solve this problem, one approach consists of selecting routes whose nodes have the most stable link cost. This paper proposes a method for improving the low power distributed MAC. This method is based on the context awareness of the each nodes energy in clustering. We propose to select a new scheme to optimize energy conserving between the clustering nodes in MANET. And this architecture scheme would use context-aware considering the energy related information such as energy, RF strength, relative distances between each node in mobile ad hoc networks. The proposed networks scheme could get better improve the awareness for data to achieve and performance on their clustering establishment and messages transmission. Also, by using the context aware computing, according to the condition and the rules defined, the sensor nodes could adjust their behaviors correspondingly to improve the network routing.

PRESSURE BASED ROUTING PROTOCOL FOR UNDERWATER WIRELESS SENSOR NETWORKS: A SURVEY

  • Khasawneh, Ahmad;Bin Abd Latiff, Muhammad Shafie;Chizari, Hassan;Tariq, MoeenUddin;Bamatraf, Abdullah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.504-527
    • /
    • 2015
  • Underwater wireless sensor networks (UWSNs) are similar to the terrestrial sensor networks. Nevertheless, there are different characteristics among them such as low battery power, limited bandwidth and high variable propagation delay. One of the common major problems in UWSNs is determining an efficient and reliable routing between the source node and the destination node. Therefore, researchers tend to design efficient protocols with consideration of the different characteristics of underwater communication. Furthermore, many routing protocols have been proposed and these protocols may be classified as location-based and location-free routing protocols. Pressure-based routing protocols are a subcategory of the location-free routing protocols. This paper focuses on reviewing the pressure-based routing protocols that may further be classified into non-void avoidance protocols and void avoidance protocols. Moreover, non-void avoidance protocols have been classified into single factor based and multi factor based routing protocols. Finally, this paper provides a comparison between these protocols based on their features, performance and simulation parameters and the paper concludes with some future works on which further study can be conducted.

Modified TCP with Post-Checksum Field and Limited Error Control Algorithm for Memory-limited Tiny Sensor Node (메모리 크기 제약이 있는 센서 노드에서의 포스트 체크섬과 제한된 오류제어 알고리즘 연구)

  • Oh, Jong-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2012
  • In a Ubiquitous sensor network environment, the sensor node is in general small and low price, and operating with power limited battery. The reliable TCP/IP protocol is used for transmitting sensed data from the sensor node. A new method was proposed in order to overcome the limitation of small embedded memory, but it is difficult to use for the case of frame error. In this paper, a new algorithm is proposed to manage the receiving frame error or loss, and it is appropriate to the sensor network to send sensed data periodically.

Design and Implementation of a Dual-Channel ZigBee Router (이중 채널 ZigBee 라우터의 설계 및 구현)

  • Kim, Brian
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.416-421
    • /
    • 2007
  • ZigBee is becoming a promising communication protocol for wireless sensor networks based on low-power consumption. In case of a ZigBee network requesting continuous transmission of sensed data, the required bandwidth can be overwhelm the maximum transmission rate of 150Kbps. However, the ZigBee router which delivers data from source node to destination node can transmit data at most in a half of maximum rate because the router can not send and receive the data simultaneously. In this paper, we propose and implement a dual-channel router which can send and receive data simultaneously. Also, we propose a centralized channel allocation algorithm to allocate different channels to each module. The experiment result by the proposed dual-channel router shows a maximum throughput of 150Kbps as large as twice of normal single-channel router.

Design of PUF-Based Encryption Processor and Mutual Authentication Protocol for Low-Cost RFID Authentication (저비용 RFID 인증을 위한 PUF 기반 암호화 프로세서와 상호 인증 프로토콜 설계)

  • Che, Wonseok;Kim, Sungsoo;Kim, Yonghwan;Yun, Taejin;Ahn, Kwangseon;Han, Kijun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.12
    • /
    • pp.831-841
    • /
    • 2014
  • The attacker can access the RFID systems illegally because authentication operation on the RFID systems are performed in wireless communication. Authentication methods based on the PUF were presented to defend attacks. Because of Hash and AES, the cost is expensive for the low-cost RFID tag. In this paper, the PUF-based encryption processor and the mutual authentication protocol are proposed for low-cost RFID authentication. The challenge-response pairs (PUF's input and output) are utilized as the authentication key and encrypted by the PUF's characteristics. The encryption method is changed each session and XOR operation with random number is utilized. Therefore, it is difficult for the attacker to analyze challenge-response pairs and attack the systems. In addition, the proposed method with PUF is strong against physical attacks. And the method protects the tag cloning attack by physical attacks because there is no authentication data in the tag. Proposed processor is implemented at low cost with small footprint and low power.

Design and Function Analysis of Dust Measurement Platform based on IoT protocol (사물인터넷 프로토콜 기반의 미세먼지 측정 플랫폼 설계와 기능해석)

  • Cho, Youngchan;Kim, Jeongho
    • Journal of Platform Technology
    • /
    • v.9 no.4
    • /
    • pp.79-89
    • /
    • 2021
  • In this paper, the fine dust (PM10) and ultrafine dust (PM2.5) measurement platforms are designed to be mobile and fixed using oneM2M, the international standard for IoT. The fine dust measurement platform is composed and designed with a fine dust measurement device, agent, oneM2M platform, oneM2M IPE, and monitoring system. The main difference between mobile and fixed is that the mobile uses the MQTT protocol for interconnection between devices and services without blind spots based on LTE connection, and the fixed uses the LoRaWAN protocol with low power and wide communication range. Not only fine dust, but also temperature, humidity, atmospheric pressure, volatile organic compounds (VOC), carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and noise data related to daily life were collected. The collected sensor values were managed using the common API provided by oneM2M through the agent and oneM2M IPE, and it was designed into four resource types: AE and container. Six functions of operability, flexibility, convenience, safety, reusability, and scalability were analyzed through the fine dust measurement platform design.