• 제목/요약/키워드: Low-power Bus

검색결과 193건 처리시간 0.024초

새로운 저가형 고속 RF 자동화 테스트 시스템 (New Challenges for Low Cost and High Speed RF ATE System)

  • Song, Ki-Jae;Lee, Ki-Soo;Park, Jongsoo;Lee, Jong-Chul
    • 한국전자파학회논문지
    • /
    • 제15권8호
    • /
    • pp.744-751
    • /
    • 2004
  • 본 논문에서는 RF소자들의 테스트시 비용 절감을 극대화 할 수 있는 저가형 고속 RF 자동화 테스트 시스템(Automatic Test Equipment, ATE)의 제작에 관하여 다루어진다. 제작된 RF ATE는 고속의 스위칭 시간과 고정밀 디지타이저를 포함한 16개의 독립적인 RF 입출력 단자를 갖고 있으며 산업 표준인 VXI(Versus module eXtensions for Instrument)와 GPIB(General Purpose Interface Bus) 인터페이스를 사용하여 구성된다. 또한 소자의 생산효율을 극대화하기 위하여 동시에 4개의 소자를 테스트할 수 있도록 시스템이 구성된다. 마지막으로 현재 가격 경쟁이 상당히 심한 소자 중 하나인 RF 전력증폭모듈올, 제작된 RF ATE를 이용하여 테스트를 진행하여 시스템 성능을 검증한다.

Stability Analysis of FCHEV Energy System Using Frequency Decoupling Control Method

  • Dai, Peng;Sun, Weinan;Xie, Houqing;Lv, Yan;Han, Zhonghui
    • Journal of Power Electronics
    • /
    • 제17권2호
    • /
    • pp.490-500
    • /
    • 2017
  • Fuel cell (FC) is a promising power supply in electric vehicles (EV); however, it has poor dynamic performance and short service life. To address these shortcomings, a super capacitor (SC) is adopted as an auxiliary power supply. In this study, the frequency decoupling control method is used in electric vehicle energy system. High-frequency and low-frequency demand power is provided by SC and FC, respectively, which makes full use of two power supplies. Simultaneously, the energy system still has rapidity and reliability. The distributed power system (DPS) of EV requires DC-DC converters to achieve the desired voltage. The stability of cascaded converters must be assessed. Impedance-based methods are effective in the stability analysis of DPS. In this study, closed-loop impedances of interleaved half-bridge DC-DC converter and phase-shifted full-bridge DC-DC converter based on the frequency decoupling control method are derived. The closed-loop impedance of an inverter for permanent magnet synchronous motor based on space vector modulation control method is also derived. An improved Middlebrook criterion is used to assess and adjust the stability of the energy system. A theoretical analysis and simulation test are provided to demonstrate the feasibility of the energy management system and the control method.

고정 위상 동작 인버터를 포함하는 위상천이 풀 브리지 DC/DC 컨버터 (Phase-Shift Full-Bridge DC/DC Converter with Fixed-Phase Operation Inverter)

  • 김진호;박재성;김홍권;박준우;신용생;지상근;조상호;노정욱;홍성수
    • 전력전자학회논문지
    • /
    • 제18권2호
    • /
    • pp.131-137
    • /
    • 2013
  • In this paper, the phase-shift full-bridge DC/DC converter with fixed-phase operation inverter is proposed. The proposed circuit consists of two full-bridge inverters which are connected in parallel. While one full-bridge inverter operates as the fixed-phase, it regulates the output voltage by adjusting the phase of the other inverter. During the normal operation period, the proposed circuit makes the less amount of conduction loss of the primary switches and secondary synchronous rectifiers, as well as the less amount of the current ripple of the output inductor, than the conventional phase-shift full-bridge DC/DC converter does. Also, it achieves high efficiency by reducing the snubber loss of the secondary synchronous rectifier. To sum up, the present inquiry analyzes the theoretical characteristics of the proposed circuit, and shows the experimental results from a prototype for 450W power supply.

TCSC Nonlinear Adaptive Damping Controller Design Based on RBF Neural Network to Enhance Power System Stability

  • Yao, Wei;Fang, Jiakun;Zhao, Ping;Liu, Shilin;Wen, Jinyu;Wang, Shaorong
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.252-261
    • /
    • 2013
  • In this paper, a nonlinear adaptive damping controller based on radial basis function neural network (RBFNN), which can infinitely approximate to nonlinear system, is proposed for thyristor controlled series capacitor (TCSC). The proposed TCSC adaptive damping controller can not only have the characteristics of the conventional PID, but adjust the parameters of PID controller online using identified Jacobian information from RBFNN. Hence, it has strong adaptability to the variation of the system operating condition. The effectiveness of the proposed controller is tested on a two-machine five-bus power system and a four-machine two-area power system under different operating conditions in comparison with the lead-lag damping controller tuned by evolutionary algorithm (EA). Simulation results show that the proposed damping controller achieves good robust performance for damping the low frequency oscillations under different operating conditions and is superior to the lead-lag damping controller tuned by EA.

Protection Strategies Against False Data Injection Attacks with Uncertain Information on Electric Power Grids

  • Bae, Junhyung;Lee, Seonghun;Kim, Young-Woo;Kim, Jong-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.19-28
    • /
    • 2017
  • False data injection attacks have recently been introduced as one of important issues related to cyber-attacks on electric power grids. These attacks aim to compromise the readings of multiple power meters in order to mislead the operation and control centers. Recent studies have shown that if a malicious attacker has complete knowledge of the power grid topology and branch admittances, s/he can adjust the false data injection attack such that the attack remains undetected and successfully passes the bad data detection tests that are used in power system state estimation. In this paper, we investigate that a practical false data injection attack is essentially a cyber-attack with uncertain information due to the attackers lack of knowledge with respect to the power grid parameters because the attacker has limited physical access to electric facilities and limited resources to compromise meters. We mathematically formulated a method of identifying the most vulnerable locations to false data injection attack. Furthermore, we suggest minimum topology changes or phasor measurement units (PMUs) installation in the given power grids for mitigating such attacks and indicate a new security metrics that can compare different power grid topologies. The proposed metrics for performance is verified in standard IEEE 30-bus system. We show that the robustness of grids can be improved dramatically with minimum topology changes and low cost.

Applying TID-PSS to Enhance Dynamic Stability of Multi-Machine Power Systems

  • Mohammadi, Ramin Shir;Mehdizadeh, Ali;Kalantari, Navid Taghizadegan
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.287-297
    • /
    • 2017
  • Novel power system stabilizers (PSSs) have been proposed to effectively dampen low frequency oscillations (LFOs) in multi-machine power systems and have attracted increasing research interest in recent years. Due to this attention, recently, fractional order controllers (FOCs) have found new applications in power system stability issues. Here, a tilt-integral-derivative power system stabilizer (TID-PSS) is proposed to enhance the dynamic stability of a multi-machine power system by providing additional damping to the LFOs. The TID is an extended version of the classical proportional-integral-derivative (PID) applying fractional calculus. The design of the proposed three-parameter tunable TID-PSS is systematized as a nonlinear time domain optimization problem in which the tunable parameters are adjusted concurrently using a modified group search optimization (MGSO) algorithm. An integral of the time multiplied squared error (ITSE) performance index is considered as the objective function. The proposed stabilizer is simulated in the MATLAB/SIMULINK environment using the FOMCON toolbox and the dynamic performance is evaluated on a 3-machine 6-bus power system. The TID-PSS is compared with both classical PID-PSS (PID-PSS) and conventional PSS (CPSS) using eigenvalue analysis and time domain simulations. Sensitivity analyses are performed to assess the robustness of the proposed controller against large changes in system loading conditions and parameters. The results indicate that the proposed TID-PSS provides the better dynamic performance and robustness compared with the PID-PSS and CPSS.

SiC를 이용한 전기버스용 3kW 고효율 저전압 전력변환장치 개발 (Development of 3kW LDC for High Efficiency using SiC for EV BUS)

  • 강민혁;정은진;강찬호;이병국
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.223-224
    • /
    • 2016
  • 본 논문은 상용급 전기버스의 24 V 전장전력공급장치로써 고전압배터리부터 저전압으로 변성하는 전력변환장치인 저전압 직류변환장치 (Low Voltage DC/DC Converter : LDC) 개발에 관하여 기술한다. 제안하는 LDC는 효율을 높이기 위해 트랜스포머 1차 측 위상천이 전브리지 스위칭 소자에 SiC MOSFET을 사용하고, 2차 측에 동기정류방식을 적용하였다. 고효율 성능을 검증하기 위해 시작품을 제작하고 시험을 통해 3 kW 97% 이상의 고효율, 고출력, 고밀도의 특성을 확인하였다.

  • PDF

계통의 종합적 미소신호 안정도해석에 관한 연구 (A Study on Integrated Small Signal Stability Analysis of Power Systems)

  • 남해곤;송성근;김용구;심관식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1033-1036
    • /
    • 1998
  • In this research project, two aspects of small signal stability are studied: improvement in Hessenberg method to compute the dominant electromechanical oscillation modes and siting FACTS devices to damp the low frequency oscillation. Fourier transform of transient stability simulation results identifies the frequencies of the dominant oscillation modes accurately. Inverse transformation of the state matrix with complex shift equal to the angular speed determined by Fourier transform enhances the ability of Hessenberg method to compute the dominant modes with good selectivity and small size of Hessenberg matrix. Any specified convergence tolerance is achieved using the iterative scheme of Hessenberg method. Siting FACTS devices such as SVC, STACOM, TCSC, TCPR and UPFC has been studied using the eigen-sensitivity theory of augmented matrix. Application results of the improved Hessenberg method and eigen-sensitivity to New England 10-machine 39-bus and KEPCO systems are presented.

  • PDF

변형된 벨리필 구조와 전하펌프 커패시터가 결합되어 필라멘트 예열기능과 역률개선능력을 가진 형광등용 전자식 안정기 (Electronic Ballast with Modified Valley fill and Charge Pump Capacitor for Prolonged Filaments Preheating and Power Factor Correction)

  • 채균;류태하;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 F
    • /
    • pp.2798-2800
    • /
    • 1999
  • A new circuit, modified valley fill (MVF) combined with resonant inductor of the self-excited resonant inverter and charge pump capacitors(CPCs), is presented to achieve high PF electronic ballast providing sufficient preheat current to lamp filaments for soft start maintaining low DC bus voltage. The MVF can adjust the valley voltage higher than half the peak line voltage. The CPCs draw the current from the input line to make up the current waveform during the valley interval. The measured PF and THD are 0.99 and 12%, respectively. The lamp current CF is also acceptable in the proposed circuit. The proposed circuit is suitable for implementing cost-effective electronic ballast.

  • PDF

Accelerating Memory Access with Address Phase Skipping in LPDDR2-NVM

  • Park, Jaehyun;Shin, Donghwa;Chang, Naehyuck;Lee, Hyung Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권6호
    • /
    • pp.741-749
    • /
    • 2014
  • Low power double data rate 2 non-volatile memory (LPDDR2-NVM) has been deemed the standard interface to connect non-volatile memory devices such as phase-change memory (PCM) directly to the main memory bus. However, most of the previous literature does not consider or overlook this standard interface. In this paper, we propose address phase skipping by reforming the way of interfacing with LPDDR2-NVM. To verify effectiveness and functionality, we also develop a system-level prototype that includes our customized LPDDR2-NVM controller and commercial PCM devices. Extensive simulations and measurements demonstrate up to a 3.6% memory access time reduction for commercial PCM devices and a 31.7% reduction with optimistic parameters of the PCM research prototypes in industries.