• Title/Summary/Keyword: Low-latency

Search Result 545, Processing Time 0.042 seconds

Cooperative Video Streaming and Active Node Buffer Management Technique in Hybrid CDN/P2P Architecture

  • Lee, Jun Pyo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.11-19
    • /
    • 2019
  • Recently, hybrid CDN/P2P video streaming architecture is specially designed and deployed to achieve the scalability of P2P networks and the desired low delay and high throughput of CDNs. In this paper, we propose a cooperative video streaming and active node buffer management technique in hybrid CDN/P2P architecture. The key idea of this streaming strategy is to minimize network latency such as jitter and packet loss and to maximize the QoS(quality of service) by effectively and efficiently utilizing the information sharing of file location in CDN's proxy server which is an end node located close to a user and P2P network. Through simulation, we show that the proposed cooperative video streaming and active node buffer management technique based on CDN and P2P network improves the performance of realtime video streaming compared to previous methods.

A mobile data caching synchronization strategy based on in-demand replacement priority (수요에 따른 교체 우선 순위 기반 모바일 데이터베이스 캐쉬 동기화 정책)

  • Zhao, Jinhua;Xia, Ying;Lee, Soon-Jo;Bae, Hae-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.13-21
    • /
    • 2012
  • Mobile data caching is usually used as an effective way to improve the speed of local transaction processing and reduce server load. In mobile database environment, due to its characters - low bandwidth, excessive latency and intermittent network, caching is especially crucial. A lot of mobile data caching strategies have been proposed to handle these problems over the last few years. However, with smart phone widely application these approaches cannot support vast data requirements efficiently. In this paper, to make full use of cache data, lower wireless transmission quantity and raise transaction success rate, we design a new mobile data caching synchronization strategy based on in-demand and replacement priority. We experimentally verify that our techniques significantly reduce quantity of wireless transmission and improve transaction success rate, especially when mobile client request a large amount of data.

Design and Implementation of NVM-based Concurrent Journaling Scheme (저널링 파일 시스템을 위한 비휘발성 메모리 기반 병행적 저널링 기법의 설계 및 구현)

  • Pak, Suehee;Lee, Eunyoung;Han, Hyuck
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.157-163
    • /
    • 2021
  • A single write operation in a file system can modify multiple data, but these changes in the file system are not atomically written to disk. Thus, for the consistency of the file system, conventional journaling guarantees crash consistency instead of sacrificing the system performance. It is known that using non-volatile memory as a journal space can alleviate performance degradation due to low latency and byte-level accessibility of non-volatile memory. However, none of the journaling techniques considering non-volatile memory provide scalability. In this paper, journal space on non-volatile memory is divided into multiple regions for scalable journaling, thus dispersing concentrated operations in one region. Second, the journal area-specific operator structure is used to accelerate data write operations to storage devices. We apply the proposed technique to JFS to evaluate it on multi-core servers equipped with high-performance storage devices. The evaluation results show that the proposed technique performs better than the existing technique of the NVM-based journaling file system.

A Study on Implementation of the High Speed Feature Extraction System Based on Block Type Classification (블록 유형 분류 알고리즘 기반 고속 특징추출 시스템 구현에 관한 연구)

  • Lee, Juseong;An, Ho-Myoung
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.3
    • /
    • pp.186-191
    • /
    • 2019
  • In this paper, we propose a implementation approach of the high-speed feature extraction algorithm. The proposed method is based on the block type classification algorithm which reduces the computation time when target macro block is divided to smooth block type that has no image features. It is quantitatively identified that occurs at 29.5% of the total image using 200 standard test images with $64{\times}64$ macro block size. This means that within a standard test image containing various image information, 29.5% can reduce the complexity of the operation. When the proposed approach is applied to the Canny edge detection, the required latency of the edge detection can be completely eliminated, such as 2D derivative filter, gradient magnitude/direction computation, non-maximal suppression, adaptive threshold calculation, hysteresis thresholding. Also, it is expected that operation time of the feature detection can be reduced by applying block type classification algorithm to various feature extraction algorithms in this way.

Transmission Latency-Aware MAC Protocol Design for Intra-Body Communications (인체 채널에서 전자기파 전송 지연 특성을 고려한 다중 매체 제어 프로토콜 설계)

  • Kim, Seungmin;Park, JongSung;Ko, JeongGil
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.8
    • /
    • pp.201-208
    • /
    • 2019
  • Intra-Body Communication (IBC) is a communication method using the human body as a communication medium. The fact that our human body consists of water and electrolyte allow such communication method could work and have strength in low-power. However, because the IBC directly affects to human body by using it as a medium, there was a lack of research in communication protocols of each communication layer. In this paper, we suggests MAC parameters which affects the performance of communication in human body channel, and propose new MAC protocol. Our results shows that our MAC is suitable for supporting high data rate applications with comparable radio duty cycle performance.

A Study on the Potential of Utilizing Sensible Media for Dance in 5G Network

  • Chang, So-jung
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.111-115
    • /
    • 2019
  • A 5G is 20 times faster than 4G. It also has hyper-connectivity, low latency merit and boundless potentials for medical education, transportation, entertainment and so on. In accordance with this, it is time to quickly look over on the utilization plan for 5G and sensible media in dance field, deal with the issue and its utilization. First of all, this study will review potential of 5G and sensible media in dance and its development plan. It seems like dance is able to communicate in a three-dimensional way. Utilizing sensible media can contribute to inform people of dance, and increase fun and interest which will make three-dimensional mutual communication. Also, in 5G environment, one can select whatever one wants in his or her viewpoint when utilizing sensible media such as VR, AR, hologram and so on. Supposing in a case of dancers and judges, it is possible for them to hire their own style of dancers in their countries. So, both the dancer and the judges have the positive merits. Third, streaming is possible without any installation, buffering is reduced. At the same time high-definition of media is allowed. This allowed collaborated performance of celebrities in dance and it also increased concentration and engagement. Dance field should acknowledge 5G sensible media, look for systemic and detailed method and disseminate and spread professional training and performance. In dance, testing fast developing sensible media due to 5G network, produce systemic dance training environment with various try is required and an effort for the performance situations in which advanced 5G sensible media is used.

RFJ: A Reliable and Fast Journaling Mechanism (RFJ: 신뢰적 고성능 데이터 버퍼 저널링 기법)

  • Park, Sejin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.45-51
    • /
    • 2019
  • Modern file systems have journaling mechanism to maintain their stored state consistently even under unexpected system crashes or disasters. However, the journaling makes I/O throughput lower. This performance degradation comes from the ordering mechanism between the data buffer and metadata buffer and two-staged buffer writing. Especially, if the data buffer and metadata buffer are journalled at the same time, then it incurs significant performance degradation due to the two-staged writing. That shows the trade-off relation-ship between I/O performance and system reliability. In this paper, we propose RFJ: a reliable and fast jour-naling mechanism to deal with this trade-off relationship. We propose an ordering enforced writeback journaling mode and selective journaling mechanism. The Ordering enforced writeback journaling mode achieves low I/O latency and the selective journaling mechanism achieves high reliability. The experimental result shows that the performance of RFJ is almost 5x faster than the journal mode of Ext3 file system but it still supports the same reliability with the journal mode.

A Study on Improved Sum Rate of Cross-Correlated SC NOMA toward 6G URLLC (6G URLLC를 지향한 교차 상관 관계 중첩 코딩을 사용하는 비직교 다중 접속의 향상된 총 전송률에 관한 연구)

  • Chung, Kyuhyuk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.1-7
    • /
    • 2021
  • Since recently only an auto-correlated superposition coding (SC) scheme for non-orthogonal multiple access(NOMA) has been investigated, this paper proposes a cross-correlated SC scheme for NOMA. First, we derive the closed-form expression of the sum rate of the proposed cross-correlated SC scheme. Then, numerical analyses demonstrate that the sum rate of the proposed cross-correlated SC scheme is larger than that of the conventional auto-correlated SC scheme. We also show that for the stronger channel gain user, the signal-to-noise ratio (SNR) gain of the proposed cross-correlated SC scheme is about 15, compared with the conventional auto-correlated SC scheme. As a result, the proposed cross-correlated SC scheme could be a promising technology for 6G ultra-reliable low-latency communications (URLLC).

An Enhanced Control Protocol Design for LADN in 5G Wireless Networks

  • Kim, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.109-117
    • /
    • 2020
  • In this paper, we analyze LADN(Local Area Data Network) that provides high throughput, low latency and service localization for 5G wireless networks and propose an enhanced control protocol design for LADN in 5G wireless networks. The concept of LADN is newly introduced in 3GPP 5G communication system and the LADN is a data network to which the UE(User Equipment) can connect with a specific LADN session only when the UE is located in a certain service area. If the LADN information between the UE and core network is not identical, the LADN session cannot be properly established. The proposed approach promplty synchronizes the LADN information between the UE and core network by using the specific registration procedure and appropriately establishes the LADN session, when the establishment of the LADN session is failed. Consequently, the proposed enhanced control protocol design(ECP) can prevent unnecessary signalling overhead and communication delay for LADN in 5G wireless networks.

Parallelized Architecture of Serial Finite Field Multipliers for Fast Computation (유한체 상에서 고속 연산을 위한 직렬 곱셈기의 병렬화 구조)

  • Cho, Yong-Suk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.1
    • /
    • pp.33-39
    • /
    • 2007
  • Finite field multipliers are the basic building blocks in many applications such as error-control coding, cryptography and digital signal processing. Hence, the design of efficient dedicated finite field multiplier architectures can lead to dramatic improvement on the overall system performance. In this paper, a new bit serial structure for a multiplier with low latency in Galois field is presented. To speed up multiplication processing, we divide the product polynomial into several parts and then process them in parallel. The proposed multiplier operates standard basis of $GF(2^m)$ and is faster than bit serial ones but with lower area complexity than bit parallel ones. The most significant feature of the proposed architecture is that a trade-off between hardware complexity and delay time can be achieved.