Browse > Article
http://dx.doi.org/10.22156/CS4SMB.2021.11.09.001

A Study on Improved Sum Rate of Cross-Correlated SC NOMA toward 6G URLLC  

Chung, Kyuhyuk (Dept. of Software Science, Dankook University)
Publication Information
Journal of Convergence for Information Technology / v.11, no.9, 2021 , pp. 1-7 More about this Journal
Abstract
Since recently only an auto-correlated superposition coding (SC) scheme for non-orthogonal multiple access(NOMA) has been investigated, this paper proposes a cross-correlated SC scheme for NOMA. First, we derive the closed-form expression of the sum rate of the proposed cross-correlated SC scheme. Then, numerical analyses demonstrate that the sum rate of the proposed cross-correlated SC scheme is larger than that of the conventional auto-correlated SC scheme. We also show that for the stronger channel gain user, the signal-to-noise ratio (SNR) gain of the proposed cross-correlated SC scheme is about 15, compared with the conventional auto-correlated SC scheme. As a result, the proposed cross-correlated SC scheme could be a promising technology for 6G ultra-reliable low-latency communications (URLLC).
Keywords
6G; NOMA; Superposition coding; Correlation coefficient; Power allocation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Chung. (2021). NOMA for correlated information sources in 5G systems. IEEE Commun. Lett., 25(2), 422-426. DOI : 10.1109/LCOMM.2020.3027726   DOI
2 A. A. A. Boulogeorg, N. D. Chatzidiamantis & G. K. Karagiannid. (2020). Non-orthogonal multiple access in the presence of phase noise. IEEE Commun. Lett., 24(5), 1133-1137. DOI : 10.1109/LCOMM.2020.2978845   DOI
3 L. Bariah, S. Muhaidat & A. Al-Dweik. (2019). Error Probability Analysis of Non-Orthogonal Multiple Access Over Nakagami-m Fading Channels. IEEE Trans. Commun., 67(2), 1586-1599. DOI : 10.1109/TCOMM.2018.2876867   DOI
4 B. Makki. K. Chitti. A. Behravan. & M. Alouini. (2020). A survey of NOMA: Current status and open research challenges. IEEE Open J. of the Commun. Society, 1, 179-189. DOI : 10.1109/OJCOMS.2020.2969899   DOI
5 W. Wu. F. Zhou. R. Q. Hu. & B. Wang. (2020). Energy-efficient resource allocation for secure NOMA-enabled mobile edge computing networks. IEEE Trans. Commun, 68(1), 493-505. DOI : 10.1109/TCOMM.2019.2949994   DOI
6 R. M. Christopher, & D. K. Borah. (2020). Physical layer security for weak user in MISO NOMA using directional modulation (NOMAD). IEEE Commun. Lett., 24(5), pp. 956-960. DOI : 10.1109/LCOMM.2020.2975193   DOI
7 Z. Ding, & H. V. Poor. (2020). A simple design of IRS-NOMA transmission. IEEE Commun. Lett., 24(5), 1119-1123. DOI : 10.1109/LCOMM.2020.2974196   DOI
8 Y. Tian et al. (2020). On the performance of mutual-aid NOMA strategy in cooperative networks. IEEE Commun. Lett., 24(2), 282-286. DOI : 10.1109/LCOMM.2019.2958073   DOI
9 E. M. Almohimmah & M. T. Alresheedi. (2020). Error analysis of NOMA-based VLC systems with higher order modulation schemes. IEEE Access, 8, 2792-2803. DOI : 10.1109/ACCESS.2019.2962331   DOI
10 K. Chung. (2020). A comparison of BER performance for receivers of NOMA in 5G mobile communication system. Journal of Convergence for Information Technology, 10(8), 7-14. DOI : 10.22156/CS4SMB.2020.10.8.007   DOI
11 K. Chung. (2020). Impact of channel estimation errors on SIC performance of NOMA in 5G systems. Journal of Convergence for Information Technology, 10(9), 22-27. DOI : 10.22156/CS4SMB.2020.10.09.022   DOI
12 Y. Saito, et al. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1-5).
13 K. Chung. (2020). On design and performance analysis of asymmetric 2PAM: 5G network NOMA perspective. Journal of Convergence for Information Technology, 10(10), 24-31. DOI : 10.22156/CS4SMB.2020.10.10.024   DOI
14 K. Chung. (2021). On calculation of total power and allocation for achieving near 1+1 capacity region of 2PAM NOMA in 5G networks. Journal of Convergence for Information Technology, 11(5), 9-16. DOI : 10.22156/CS4SMB.2021.11.05.009   DOI
15 K. Chung. (2021). Numerical Analysis of Sufficient Condition on Larger Rate Volume of CIS/non-SIC over IIS/SIC in 3-User NOMA. Journal of Convergence for Information Technology, 11(8), 29-35. DOI : 10.22156/CS4SMB.2021.11.08.029   DOI
16 I. Lee & J. Kim. (2019). Average Symbol Error Rate Analysis for Non-Orthogonal Multiple Access With M-Ary QAM Signals in Rayleigh Fading Channels. IEEE Commun. Lett., 23(8), 1328-1331. DOI : 10.1109/LCOMM.2019.2921770   DOI
17 T. Assaf, A. Al-Dweik, M. E. Moursi & H. Zeineldin. (2019). Exact BER Performance Analysis for Downlink NOMA Systems Over Nakagami-m Fading Channels. IEEE Access, 7, 134539-134555. DOI : 10.1109/ACCESS.2019.2942113   DOI
18 K. Chung. (2021). Correlated superposition coding: Lossless two-user NOMA implementation without SIC under user-fairness. IEEE Wireless Commun. Lett., Jun. 2021. (Early Access) DOI : 10.1109/LWC.2021.3089996   DOI
19 E. C. Strinati, et al. (2019). 6G: The next frontier: From holographic messaging to artificial intelligence using subteraherts and visible light communications. IEEE Veh. Technol, Mag. 14(3), 42-50. DOI : 10.1109/MCOM.2017.1500657CM   DOI
20 L. Dai, et al. (2015). Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE Commun. Mag., 53(9), 74-81. DOI : 10.1109/MCOM.2015.7263349   DOI
21 Q. Wang, R. Zhang, L. L. Yang & L. Hanzo. (2018). Non-orthogonal multiple access: a unified perspective. IEEE Wirel. Commun., 25(2), 10-16. DOI : 10.1109/MWC.2018.1700070   DOI
22 D. Wan, M. Wen, F. Ji, H. Yu & F. Chen. (2018). Non-orthogonal multiple access for cooperative communications: Challenges, opportunities, and trends. IEEE Wireless Commun., 25(2), 109-117. DOI : 10.1109/MWC.2018.1700134   DOI
23 M. Aldababsa, et al. (2020). Bit error rate for NOMA network. IEEE Commun. Lett., 24(6), 1188-119. DOI : 10.1109/LCOMM.2020.2981024   DOI