• Title/Summary/Keyword: Low-carbon green growth city

Search Result 26, Processing Time 0.022 seconds

A study on Integrating Strategy of Low-carbon Urban Planning System (탄소저감 도시계획 시스템의 통합화 방안 도출 연구)

  • Park, Chan Ho;Kim, Bum Seok
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.99-106
    • /
    • 2013
  • Through the rapid economic growth, modern society have achieved the industrialization but needed to respond to climate change and low-carbon green growth on a scale of urban area. Many studies about the low-carbon city and the green city are on going, but most of them are not integrated but go along in each area(construction, transportation, energy, etc) In this paper, we surveyed the current status of researches about information system to design low-carbon city or green city, and define the method to integrate the outcomes from the each area. As a result integrated model of 'Low-carbon Urban Planning integrated System' in the paper, Individual system is developed by way of C/S form because web system raised problems for data load in analysis. The integrated system was decided to develop by way of Web form, and integrated system was developed by can use the analysed DB in the individual system. We expect this study can help future researches to develop more economical and efficient integrated information system model to design the low-carbon city and the green city.

Appilication of a Green City Index as a Green Space Planning Index for the Low-Carbon Green City of Gangneung-si

  • Cho, Su-Hyun;Jo, Hyun-Ju
    • Journal of Environmental Science International
    • /
    • v.25 no.10
    • /
    • pp.1381-1387
    • /
    • 2016
  • This study aims to establish baseline data for sustainable monitoring by applying the green city index (GCI), which is set up to evaluate the city level, to the city of Gangneung-si, which was designated as a pilot city for the Low-carbon Green Growth City project by the Ministry of Land, Infrastructure, and Transportation. The GCI was applied in the framework of European systems, while considering the social and economic status of Korea. Indicators from 7 areas-$CO_2$, energy, building, transportation, water, waste, and quality of atmosphere were analyzed, except for qualitative indicators. Results indicate that total $CO_2$ emissions were 30.8 tons per capita, or 2.2 tons per one million units of real GDP. The total final energy consumption was 0.231 TOE/capita, or 0.317 TOE per one million units of real GDP. The percentage of total energy derived from renewable resources was 0.41% and energy consumption by the building was $433.5Mwh/1,000m^2$. The total percentage of the working population travelling to work daily by public transportation (limited to bus) was 19%. Further, the total annual water consumption was $99m^3/capita$, and the water lost in the water distribution system was $0.057m^3/capita/day$. The total annual waste collected was 0.0077 ton per capita, The annual mean emission were 0.014 ppm/day for $NO_2$, 0.005 ppm/day for $SO_2$, and 0.019 ppm/day for $O_3$. The annual mean for PM10 emissions was $39{\mu}g/m^3/day$.

The Results of the Environmental Model City Project in Japan (일본 환경모델도시의 계획적 특성과 추진성과에 대한 고찰)

  • Kim, Nam-Jung;Kang, Myung-Soo
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.429-437
    • /
    • 2011
  • The purpose of this research is to seek the suggestions applicable to Korean green-growth(development) policy and the realization of low carbon society by looking around the promotion policy and the process, the promotion system, main environmental policy in each city about the business for environmental model city in Japan which has been promoted in a city in order to realize low-carbon society. Japan had selected 13 local governments as an environmental model city as a part of a policy to build low-carbon society in 2008~2009, and Japan has formed information sharing between cities and provinces, the spread of information sharing and the free competition among local governments for an environmental model city through Zero Carbon City Promotion Council consisting of local governments and specialists. When examining these cases in Japan, the green-growth policy promoting currently in Korea needs to be converted from the central government-dominated policy to the local government-dominated policy and Koreaneeds to make more effort to develop software programs in order to realize green-growth social system.

Analysis of Carbon Emissions and Land Use Change for Low -Carbon Urban Management - Focused on Jinju (저탄소 도시관리를 위한 탄소배출과 토지이용변화 분석 -진주시를 중심으로-)

  • Eo, Jae-Hoon;Kim, Ki-Tae;Jung, Gil-Sub;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.1
    • /
    • pp.129-134
    • /
    • 2010
  • Low-carbon Green Growth is highlighted as the main political issue from in and outof Korea. Recently Korean government announced the vision for low-carbon green growth. Considering this as a starting point the carbon emission estimation has become an important factor in the city planning. In order to realize the carbon reduction planning, this research was focused on the trend analyzes between the carbon exhaust estimation as well as the land use change for the past 40 years in Jinju. The image processing data of past aerial photography and the land suitability assessment databases were used to collect the useful information's for the land trend analysis for 40 years. As the results, the land use changes by new residential developments have led to increase the carbon emissions and population concentration rapidly. The urban management planning for low carbon and green growth should consider carbon emissions by population growth derived from land use change. Further research need to estimate the accurate carbon exhaust using relationship model with fuel consumption, carbon estimation, and land use.

On Low-Carbon Green Waterfront Cities (해외 저탄소 녹색수변도시)

  • Kwon, Yong-Woo;Wang, Kwang-Ik;Yu, Seon-Cheol
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • Low-carbon green waterfront cities for overseas cases were reviewed to propose the direction for Korea. The implications suggested include energy saving by resource circulation, compact land use planning, transit oriented development, and utilization of renewable energy. These in turn suggest the following implementations; (1) Energy saving according to compact city, complex land use, and transit oriented development, (2) Renewable energy use in buildings and daily lives, (3) Expansion of green space for carbon mitigation and improved quality of life, and (4) Water and resource circulation system. We finally discussed that development of the green waterfront cities in Korea requires the fundamentals of low-carbon green waterfront cities achieved by overseas cases study and technical investigation.

The Suggestion and application of the Evaluation Method for Selecting Energy Plant on City Planning Step (도시계획단계에서의 에너지 플랜트 선정을 위한 평가방안 제시 및 적용)

  • Park, Jin-Young;Park, Tool;Yee, Jurng-Jae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • The forecasted energy shortage tends to encourage to develop the next generation energy to countermove the energy problems and the climatic change all over the world. Korean government is pushing ahead with the policy for 'Low Carbon Green Growth' to deal with climate changes and to overcome energy problems. And many studies for low carbon green city or zero carbon city have been progressed. In this study, energy plants and energy scenarios are selected by energy supply suited features of city at city plan. The method to evaluate energy scenario can be proposed to apply various energy plants for energy demand on city planning step and evaluation method can be systematized to be used by users. Also the calculated values are changed into index for comparison according to each energy scenario.

Design for Carbon Neutral Arboretum in Gwangju Metropolitan City (광주광역시 탄소중립 수목원 설계)

  • Kim, Hoon Hee
    • KIEAE Journal
    • /
    • v.9 no.3
    • /
    • pp.61-68
    • /
    • 2009
  • Gwangju Metropolitan Government & Ministry of Environment have signed a model city in response to Climate Change agreement. The agreement calls for Gwangju to cut greenhouse gas emissions 10% below 2005 levels by 2015. Gwangju has seen this agreement as an opportunity to cut pollution and conserve the environment as well as to reinvigorate local economy. According to policy of Gwangju, Gwangju held design competition for Gwangju City Arboretum on march, 2009. The purpose of design competition was to give a wide publicity to Gwangju as Hub City of Asian Culture and construct carbon-neutral arboretum in accordance with the policy of 'Low-Carbon and Green Growth'. First of all, a design concept of arboretum is 'winding, round, overlay 'to reflect the landscape of Nam-do which is surrounded by mountains and river flows through the village. Second, the arboretum has five different places with these themes - Forest of Festivals, Health, Nature, Nostalgia, Education and Future. Each place has a symbolic theme park and different flow planning respectively. Third, the most critical point is that the arboretum is a carbon-neutral park. Gwangju arboretum will soon be developed in metropolitan sanitary landfill and constructed as the O2 arboretum based on low carbon strategy. Fourth, the O2 arboretum suggests specialized issue : 'Energy Saving', 'Recycling System', 'Green Network', 'Water System(rainwater maintenance and wetland development)'. Besides, main buildings(greenhouse, visitor center, Nam-do experience exhibition hall, and forest museum) is designed in consideration of harmony with topography character, surroundings. Also, planting will be a multilayer plant based on native landscape trees in consideration of function and the growth characteristics.

Realization of Zero Waste Clean City to Low Carbon Green Growth (저탄소 녹색 성장을 위한 폐기물 제로 청정도시 구상)

  • Oh, Jeong-Ik;Ahn, Soo-Jeung;Kim, Jong-Yeob
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.131-140
    • /
    • 2010
  • Zero waste clean city was visualized by designing the environmental fundamental facilities such as automated waste collection and bio-energizing system of domestic waste, which was categorized into food and combustible waste from urban area. The biomass circulation position was applied to the domestic waste collection position combined with bio-energizing system in the zero waste clean city. Bio-energizing system consisted of bio-gasification, bio-fuel and bioenergy-circulation process. Food wastes were treated by bio-gasification with anaerobic digestion, and combustible wastes were made of bio-fuel with pyrolysis/drying. Biogas and bio-fuel was utilized into the electric generation or boiler heat in bioenergy-circulation process. The emission of carbon dioxide(CO2) and construction fee of the environmental fundamental facilities related with domestic waste was estimated in the existing city and zero waste clean city, assuming the amount of food waste 35 ton/day, combustible waste 20 ton/day from domestic area. Consequently, 2.7 times lower carbon dioxide emission and 15% construction fee of the environmental fundamental facilities related with domestic waste were obtained from the zero waste clean city by comparing with existing city.

The Investigation of Problems for Next Generation Energy System during Existing Urban Plan Stage (기존 도시계획 단계에서 차세대에너지시스템 적용시 문제점 검토)

  • Park, Jin-Young;Kim, Sam-Uel;Park, Yool;Lee, Sang-Jin;Lee, Jurng-Jae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.190-195
    • /
    • 2009
  • Since the industrial revolution, the global environmental problems such as greenhouse gas accumulation and the average temperature increase have caused people's attention. 'Low Carbon, Green Growth' was presented to cope with these global concerns, as one of main policies of 2008 in Korea. The paradigm of a green urban development is started to concern the whole city's energy problems owing to realize 'Low Carbon, Green Growth' in the urban side. The government established a nation's basic energy plan for 20 years, and some local cities made efforts to develop new renewable energy such as the solar, wind and water energy which are suitable to each city's character. As a part of these efforts, the concept of U-Eco city is newly appeared to reflect upon ubiquitous technique, urban ecology and the next generation energy system. However, urban plan is difficult to adopt this next generation energy system with existing laws, regulations and technical systems. The new executive and systematic system is needed to realize the U-Eco city U-Eco for the management of an efficient city. In this study, the authors investigate the concept of the next generation energy system and U-Eco city to realize the energy-efficient city plan and analyze problems to occur during the application of them in an existing city plan. Then, the authors show the remedies to deal with occurred problems.

  • PDF

Carbon Storage Estimation of Urban Area Using KOMPSAT-2 Imagery (KOMPSAT-2호 위성영상을 이용한 도시지역 탄소저장량 추정)

  • Kim, Ki-Tae;Cho, Jin-Woo;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2011
  • Recently Korean government announced the vision for low-carbon green growth. Quantifying of the carbon storage, distribution, and change of urban trees is vital to understanding the role of vegetation in the urban environment. In the city planning the carbon storage estimation has become an important factor. In this paper, KOMPSAT-2 satellite imagery was used to develop a method to predict the urban forest carbon storage from the Normalized Difference Vegetation Index (NDVI) computed from a time sequence image data. The total carbon storage change by trees in the 6 administrative zonings of Jinju was estimated using the image data in 2007 and 2009. Therefore the paper presents a method based on the satellite images, which can estimate the spread of urban tree and carbon storage variation using KOMPSAT-2.