• Title/Summary/Keyword: Low-carbon emissions

Search Result 301, Processing Time 0.027 seconds

Nitrogen Oxides Adsorbing Capacity of High Carbon Fly Ash Containing Cementitious Materials (탄소함량이 높은 플라이애쉬를 함유한 시멘트 페이스트의 질소산화물 흡착 성능)

  • Lee, Bo Yeon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.3
    • /
    • pp.37-42
    • /
    • 2018
  • The use of fly ash in construction materials is increasing worldwide due the various advantages of using it, such as to produce durable concrete, or to use less cement and thus lower carbon dioxide emissions. The quality of fly ash is often determined by loss on ignition value (LOI), where an upper limit of LOI is set in each country for quality control purpose. However, due to many reasons, production of high LOI fly ash is increasing that cannot be utilized in concrete, ending up in landfill. In this study, the effect of fly ash use in cementitious materials on nitrogen oxides adsorption is examined. In particular, the effect of using high LOI, and thus high carbon content fly ash on nitrogen oxides adsorption is investigated. The results suggest that the higher carbon content fly ash is related to higher nitrogen dioxide adsorption, although normal fly ash was also more effective in nitrogen dioxide adsorption than ordinary portland cement. Also, higher replacement rate of up to 40% of fly ash is beneficial for nitrogen dioxide adsorption. These results demonstrate that high carbon fly ash can be used as construction materials in an environmentally friendly way where strength requirement is low and where nitrogen oxides emissions are high.

Green New Deal Project and Low Carbon, Green Growth Strategy (녹색뉴딜사업 및 저탄소 녹색성장 전략)

  • Lee, Sun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.42 no.2
    • /
    • pp.41-48
    • /
    • 2009
  • The Government declared 'Low-Carbon Green Growth' as the new national vision for future development to improve economic growth and quality of life through higher energy efficiency, less energy consumption, wider use of renewable energy, etc. Korea can no longer delay participating in international efforts against global warming by reducing carbon dioxide and other greenhouse gas emissions. Thus low-carbon green growth is not a matter of choice, and it becomes indispensible to sustaining the nation's economic development. The Government is determined to take the initiative in speeding up economic recovery by carrying out the large scale investment projects such as the Korean version of a 'Green New Deal. The 49 trillion-won projects include river improvement, eco-friendly transportation networks, advanced information infrastructure, water resources & dam construction, green cars & clean energy development, etc. which will create nearly one million new jobs over the next four years.

  • PDF

Uniform Field Emission from Carbon Nanotubes Fabricated by CO Disproportionation

  • Lee, Jin-Seung;Suh, Jung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.12
    • /
    • pp.1827-1831
    • /
    • 2003
  • Field emission of carbon nanotubes (CNTs) fabricated by disproportionation of CO has been studied. CNTs fabricated on well-ordered Co nanowire arrays formed on the porous anodic aluminum oxide templates were well graphitized, uniform in diameter and aligned vertically with respect to the plane of the template, and showed a good field emission property. Very uniform emissions were observed from the CNTs fabricated at relatively low temperature, $500-600^{\circ}C$. Low fabrication temperature such as $500^{\circ}C$ could make it possible to fabricate CNTs on soda lime glass, a low-cost substrate, for display panel.

Study of Pore Development Model in Low Rank Solid Fuel Using FERPM (FERPM을 적용한 저등급 고체연료의 기공발달 모델 특성 연구)

  • PARK, KYUNG-WON;KIM, GYEONG-MIN;JEON, CHUNG-HWAN
    • Journal of Hydrogen and New Energy
    • /
    • v.30 no.2
    • /
    • pp.178-187
    • /
    • 2019
  • Due to the increasing demand of high rank coal, the use of low rank coal, which has economically advantage, is rising in various industries using carbonaceous solid fuels. In addition, the severe disaster of global warming caused by greenhouse gas emissions is becoming more serious. The Republic of Korea set a goal to reduce greenhouse gas emissions by supporting the use of biomass from the Paris International Climate Change Conference and the 8th Basic Plan for Electricity Supply and Demand. In line with these worldwide trends, this paper focuses on investigating the combustibility of high rank coal Carboone, low rank coal Adaro from Indonesia, Baganuur from Mongolia and, In biomass, wood pellet and herbaceous type Kenaf were simulated as kinetic reactivity model. The accuracy of the pore development model were compared with experimental result and analyzed using carbon conversion and tau with grain model, random pore model, and flexibility-enhanced random pore model. In row lank coal and biomass, FERPM is well-matched kinetic model than GM and RPM to using numerical simulations.

A study on the change of EEOI before and after modifying bulbous at the large container ship adopting low speed operation (대형 컨테이너선의 저속 운항 시 선수부 개조 전후 EEOI 변화에 대한 연구)

  • Park, Goryong;Cho, Kwonhae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The International Maritime Organization(IMO) has adopted and implemented compulsory regulation for reducing greenhouse gas emission that cause global warming. However, with global warming underway, the IMO plans to enforce voluntary carbon dioxide emissions reduction based on the Ship Energy Efficient Management Plan and the Energy Efficiency Operational Indicator(EEOI) in the near future. Large container ships sail at low speeds in order to save fuel and reduce carbon dioxide emissions. However, bulbous bows designed for high-speed ships decrease fuel efficiency by acting as resistance when reduced speeds are adopted by large container ships. In order to adopt low-speed operations and increase fuel savings, the bulbous bow of a large container ship was modified into the proper shape and size. Fuel consumption was compared for checking the result of EEOI before and after modifying the bulbous bow adopted on low speed operation of large high-speed ships. The results confirmed much larger carbon dioxide emissions reduction than expected. If EEOI would be implemented as compulsory regulation for reducing carbon dioxide emissions, bulbous bow modification can be considered as one of the fuel saving methods for the high-speed ships.

Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition (수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향)

  • Jeon, Jeeyeon;Park, Hyeonwook;Bae, Choonsik
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

A Quantitative Analysis of GHG Emissions from the Korean Offshore Large Scale Fisheries Using an LCA Method (전과정 평가에 의한 한국 근해 대형어업의 온실가스 배출량 분석)

  • Lee, Ji-Hoon;Lee, Chun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • The negative fishery factors from an environmental perspective are greenhouse gas emissions due to high fossil fuel use, destruction of underwater ecosystems by bottom trawls, a reduction in resources by fishing, and damage to ecosystem diversity. In particular, the greenhouse gas emissions from fisheries is an important issue based on the Cancun meeting in Mexico in 1992 and the Kyoto protocol in 2005. However, no investigations on the GHG emissions from Korean fisheries have been conducted. Therefore, a quantitative analysis of GHG emissions from the Korean fishery industry is needed as a first step to identify a method to reduce GHG emissions from fisheries. The purpose of this study was to investigate the degree of GHG emitted from fisheries. Here, we calculated the GHG emissions from four main Korean fisheries(i.e., large trawls, large purse seines, Danish seines, and bottom pair trawls) using the life cycle assessment(LCA) method. The system boundary and input parameters for each process level were defined for LCA analysis. The fuel use coefficient of each fishery was also calculated. The GHG emissions from edible seafood were calculated considering different consuming areas. The results will be helpful to understand GHG emissions from Korean fisheries.

A Study on Analyzing Eco-efficiency of Carbon Labeled Building Materials - Focused on Floor Finishes - (탄소성적표시 건축 재료의 환경 효율성 분석 연구 - 바닥 마감재를 중심으로 -)

  • Choi, Ji-Hye;Lee, Yoon-Sun;Kim, Jae-Jun
    • Journal of the Korean housing association
    • /
    • v.25 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • In recent years, Korean government has focused on improving the environmental impact of products in order to reduce greenhouse gas emissions and to achieve their energy goals. The government has been conducting the following polices such as green procurement inducement and certification system. After carbon labeling was conducted in 2009, among a total of 1,065 items, 97 building materials have been given a certification: finishing materials items have the highest weight (56%). The increase in the certification numbers shows that there has been considerable technical efforts in the building material industry. At the awareness of carbon label and purchase of low carbon product, however, customers are aware of carbon labeling but the purchasing rate of carbon product is low. In this paper, we suggest that low carbon activities must also be considered in order to create client value by adding the concept of ecological efficiency. The objective of this study to measurer the eco-efficiency of carbon labeled building materials on the basis of environmental aspects of the product with the perspective of economy for purchasing the excellent products.

Combustion Control through the DME Injection Timing in the Hydrogen-DME Partially Premixed Compression Ignition Engine (DME 분사 시기 조절을 통한 수소-DME 부분 예혼합 압축착화 연소 제어)

  • Jeon, Jeeyeon;Bae, Choongsik
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • Hydrogen-dimethy ether(DME) partially premixed compression ignition(PCCI) engine combustion was investigated in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME was injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME inejction timing was varied to find the optimum PCCI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. As the DME injection was retarded, the CO and HC emissions were decreased due to high combustion efficiency. NOx emissions were increased due to the high in-cylinder temperature. When DME were injected at $-30^{\circ}CA$ aTDC, reduction of HC, CO and NOx emissions was possible with high value of IMEP.

Study on Comparison of Nenewable Fuel Standard Policy on Global (해외 신재생연료 의무혼합제도 비교분석 연구)

  • Lim, Eui Soon;Kim, Jae-Kon;Jung, Choong-Sub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.150.1-150.1
    • /
    • 2011
  • The global rise of greenhouse gas(GHG) emissions and its potentially devastating consequences require a comprehensive regulatory framework for reducing emissions, including those from the transport sector. alternative fuels and technologies have been promoted as a means for reducing the carbon intensity of the transport sector. Renewable fuel policies were historically motivated by energy security concerns, and to promoted agricultural industries. In the last decade, biofuels have also been discussed as low or net-zero carbon soures of energy for transportation. Hence, the development of biofuels has been supported by a range of policy instruments, including volumetric targets or blending mandates, tax incentives or penalties, preferential government purchasing, government funded research, development in world-wide. As one of the most powerfuel instruments, renewable fuel mandates require fuel producers to produce a pre-defined amount(or share) of biofuels and blend them with petroleum fuel. In this study, we reviewed Renewable Fuel Standard(RFS, USA), Renewable Transport Fules Obligation (RTFO, UK) as a renewable fuel mandate policy to reduce GHG. This includes not only mandate system for blending of biofuels in transport fuels, but also sustainability to use biofuels in this system.

  • PDF