• Title/Summary/Keyword: Low-Shrinkage

Search Result 493, Processing Time 0.031 seconds

Evaluation of Shrinkage Properties Based on Mock-Up Testin High Performance Concrete (Mock-Up 시험에 의한 고성능 콘크리트의 수축특성 분석)

  • Han, Cheon-Goo;Kang, Su-Tae;Koh, Kyung-Taek;Hann, Chang-Pyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.5
    • /
    • pp.106-114
    • /
    • 2006
  • This paper investigates the fundamental properties and shrinkage characteristics of low shrinkage high performance concrete(LSHPC), using mock-up specimens. According to the test results, the most suitable mix proportions of LSHPC need a higher dosage of SP agent and AE agent, in order to obtain the target of slump flow and air content. This is due to reduce fluidity and air content respectively. It also presented earlier setting time than control concrete by 6 hours and exhibited compressive strength of 60MPa at age 28 days. Autogenous shrinkage of LSHPC was the half of the value of control concrete. Drying shrinkage of center section of LSHPC showed similar tendency with autogenous shrinkage, because of no internal moisture movement, while surface section had larger drying shrinkage. The specimen with embedded reinforcing bar had smaller deformation owing to confinement of reinforcing bar.

Shrinkage Reduction Performance of HPFRCC Using Expansive and Srhinkage Reducing Admixtures (팽창재와 수축저감제를 사용한 HPFRCC의 수축 저감 성능)

  • Park, Jung-Jun;Moon, Jae-Heum;Park, Jun-Hyoung;Lee, Jang-Hwa;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.34-40
    • /
    • 2014
  • High-performance fiber-reinforced cement composite (HPFRCC) shows very high autogenous shrinkage, because it contains a low water-to-binder ratio (W/B) of 0.2 and high fineness admixture without coarse aggregate. Thus, it needs a method to decrease the cracking potential. Accordingly, in this study, to effectively reduce the shrinkage of HPFRCC, a total of five different ratios of SRA (1% and 2%), EA (5% and 7.5%), and a combination of SRA and EA (1% and 7.5%) were considered. According to the test results of ring-test, a combination of SRA and EA (1% and 7.5%) showed best performance regarding restrained shrinkage behavior without significant deterioration of compressive and tensile strengths. This was also verified by performing modified drying shrinkage crack test.

Comparison of Measurement Methods and Prediction Models for Drying Shrinkage of Concrete (콘크리트 건조수축 측정 방법 및 예측 모델에 대한 비교)

  • Yang, Eun-Ik;Kim, Il-Sun;Yi, Seong-Tae;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.85-91
    • /
    • 2010
  • In this study, the drying shrinkage strains were compared of 24~60 MPa concrete specimens subjected to various curing conditions and measurement methods were compared. And, the applicability of the test and prediction methods were investigated. According to the results, drying shrinkage was significantly reduced in 28 day curing condition. In the sealed curing case, drying shrinkage strain from demolding time was identical to the one of the standard curing case for low strength concrete, however, drying shrinkage strain was greatly increased than the standard case for high strength case because of the effect of autogenous shrinkage. The efficient measurement was possible using the embedded gage for concrete drying shrinkage, but, the measured value by contact gage was lower than the one by the embedded gage. The test results agreed with EC2 model better than the other.

Preparation of Silica Monoliths with Macropores and Mesopores and of High Specific Surface Area with Low Shrinkage using a Template Induced Method

  • Guo, Jianyu;Lu, Yan;Whiting, Roger
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.447-452
    • /
    • 2013
  • In this study we report a new method for the synthesis of a silica monolithic column bed with bimodal pores (throughpores and mesopores). The template induced synthesis method was used to direct bimodal pores simultaneously instead of the usual post base-treating method. Block polymer Pluronic F127 was chosen as a dual-function template to form hierarchically porous silica monolith with both macropores and mesopores. This is a simplification of the method of monolithic column preparation. Poly(ethylene glycol) was used as a partial substitute for F127 can effectively prevent shrinkage during the monolith aging process without losing much surface area (944 $m^2/g$ to 807 $m^2/g$). More importantly, the resultant material showed a much narrower mesopore size (centered at 6 nm) distribution than that made using only F127 as the template reagent, which helps the mass transfer process. The solvent washing method was used to remove the remaining organic template, and it was proved to be effective enough. The new synthesis method makes the fabrication of the silica monolithic column (especially capillary column) much easier. All the structure parameters indicate that monolith PFA05 prepared by the above method is a good material for separation, with the merits of much higher surface area than usual commercial HPLC silica particles, suitable mesopore volume, narrow mesopore size distribution, low shrinkage and it is easily prepared.

Autogenous Shrinkage of VES-LMC considering Hydration-Heat (VES-LMC의 열 특성을 고려한 자기수축)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.73-80
    • /
    • 2005
  • Durability of concrete structures is seriously compromised by cracking at early-age concretes, particularly in high-strength or high-performance concrete structures. Since early-age cracking is influenced by various factors that affect the hydration process, early-age shrinkage and stress/strain development, the behavior at early-age is highly complex and no rational methodologies for its control have yet been established. Concrete structures often present volumetrical changes particularly due to thermal and moisture related shrinkages. Volumetric instability is detrimental to the performance and durability of concrete structures because structural elements are usually restrained. These restrained shrinkages develope tensile stresses which often results in cracking in combination with the low fracture resistance of concrete. Early-age defects in high-performance concrete due to thermal and autogenous deformation shorten the life cycle of concrete structures. Thus, it is necessary to examine the behavior of early-age concrete at the stages of design and construction. The purpose of this study was to propose a shrinkage models of VES-LMC (very-early strength latex-modified concrete) at early-age considering thermal deformation and autogenous shrinkage.

  • PDF

Effect of Fe, Mn Content on the Castability of Al-4%Mg-0.9%Si Alloys for High Pressure Die Casting (고압 금형 주조용 Al-4%Mg-0.9%Si 합금의 주조특성에 미치는 Fe, Mn 함량의 영향)

  • Kim, Heon-Joo
    • Journal of Korea Foundry Society
    • /
    • v.33 no.2
    • /
    • pp.55-62
    • /
    • 2013
  • Effect of Fe and Mn contents on the castability of Al-4wt%Mg-0.9wt%Si system alloy has been studied. According to the analysis of cooling curve for Al-4wt%Mg-0.9wt%Si-0.3wt%Fe-0.3/0.5wt%Mn alloy, ${\alpha}-Al_{15}(Fe,Mn)_3Si_2$ and ${\beta}-Al_5FeSi$ phases crystallized above eutectic temperature of $Mg_2Si$. Therefore, these phases affected both the fluidity and shrinkage behaviors of the alloy during solidification. As Fe and Mn contents of Al-4wt%Mg-0.9wt%Si system alloy increased from 0.1 wt% to 0.4 wt% and from 0.3 wt% to 0.5 wt% respectively, the fluidity of the alloy decreased by 26% and 33%. When Fe content of the alloy increased from 0.1 wt% to 0.4 wt%, 23% decrease of macro shrinkage and 19% increase of micro shrinkage appeared. Similarly, Mn content of the alloy increased from 0.3 wt% to 0.5 wt%, 11% decrease of macro shrinkage and 14% increase of micro shrinkage appeared. Judging from the castability of the alloy, Al-4wt%Mg-0.9wt%Si alloy with low content of Fe and Mn, 0.1 wt% Fe and 0.3 wt% Mn, is recommendable.

Reduction of Autogenous Shrinkage of HPFRCC Depending on Changes of ERCO Replacement Ratio and Fiber Replacement Ratio (ERCO 혼입율과 섬유혼입비 변화에 따른 HPFRCC의 자기수축저감)

  • Lee, Jea-Hyeon;Baek, Cheol;Jo, Man-Ki;Jo, Sung-Jun;Lee, Jong-Tea;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.30-31
    • /
    • 2016
  • As the treatments of many kinds of explosive objects increase recently, it is in the trend that explosion accidents increase. Thus, many studies on HPFRCC (High-performance Fiber-reinforced Cement Composites) whose ductility is enhanced are being conducted actively in order to minimize the damages from explosion accidents. However, HPFRCC, the self-shrinkage of HPFRCC is on the rise as a problem since it becomes ultra-high strengthened by using low W/B. Thus, in this study, it is intended to evaluate the capacity for reducing the self-shrinkage of HPFRCC depending on some changes of ERCO(Emulsified Refined Cooking Oil) replacement ratio and the fiber replacement ratio between some short steel fibers (SS) and some long organic fibers (OL). As a result, it was found that some excellent effects are exerted since the self-shrinkage was reduced a lot as the ERCO replacement ratio increases and the fiber replacement ratio of SS rather than OL increases.

  • PDF

Effect of waste glass as powder and aggregate on strength and shrinkage of fiber reinforced foam concrete

  • Mayada A. Kareem;Ameer A. Hilal
    • Advances in materials Research
    • /
    • v.12 no.4
    • /
    • pp.331-349
    • /
    • 2023
  • Foam concrete can be considered as environmental friendly material due to its low weight, its minimal cost and a possibility to add waste materials in its production. This paper investigates the possibility of producing foam concrete with waste glass as powder and aggregate. Then, the effect of using waste glass on strength and drying shrinkage of foam concrete was examined. Also, the effect of incorporating polypropylene fibers (12 mm length and proportion of 0.5% of a mix volume) on distribution of waste glass as coarse particles within 1200 kg/m3 foam concrete mixes was evaluated. Waste glass was used as powder (20% of cement weight), as coarse particles (25%, 50% and 100% instead of sand volume) and as fine particles (25% instead of sand volume). From the results, the problem of non-uniform distribution of coarse glass particles was successfully solved by adding polypropylene fibers. It was found that using of waste glass as coarse aggregate led to reduce the strength of foam concrete mixes. However, using it with polypropylene fibers in combination helped in increasing the strength by about 29- 50% for compressive and 55- 71% for splitting tensile and reducing the drying shrinkage by about (31- 40%). In general, not only the fibers role but also the uniformly distributed coarse glass particles helped in improving and enhancing the strength and shrinkage of the investigated foam concrete mixes.

Autogenous Shrinkage of Very-Early Strength Latex-Modified Concrete with Retarder Contents (지연제 함량 변화에 따른 초속경 라텍스개질 콘크리트(VES-LMC)의 자기수축)

  • Choi, Pan-Gil;Yun, Kyong-Ku;Lee, Bong-Hak
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-194
    • /
    • 2009
  • The autogenous shrinkage of high-performance concrete, including very-early strength latex-modified concrete(VES-LMC), is generally bigger than that of normal strength concrete because of the low water/cement ratio, high binder contents, and usage of superplasticizer. Mix. proportion of VES-LMC has low water/cement ratio(0.38), high cement content(390kg/m$^3$), and aid of latex(15% of cement weight). Thus, these factors of VES-LMC, rapid water self-dissipation and evaporation within 3 hours of concrete placement would increase the autogenous shrinkage. The purpose of this study was to evaluate the early-age shrinkage, thermal deformation and autogenous shrinkages of VES-LMC with retarder contents(retarder solids-cement ratio, by weight) using to secure working time in field. The experimental results showed that retarder contents do not affect of the maximum hydration temperature. Early-age expansion of VES-LMC was mostly caused by thermal expansion and partly by autogenous expansion. The autogenous shrinkage is decreased by increasing the retarder contents within this study. On the other hand, the usage of retarder should be decided carefully considering the field conditions because an excessive usage of retarder can cause handful early-age expansion.

  • PDF

Effect of Recycled PET Fiber Geometry and Length on the Plastic Shrinkage Cracking of Cement Based Composites (재생 PET 섬유의 형상 및 길이가 시멘트 복합 재료의 소성 수축 균열에 미치는 영향)

  • Won, Jong-Pil;Park, Chan-Gi;Kim, Hwang-Hee;Lee, Sang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.233-239
    • /
    • 2007
  • The main objective of this study was to evaluate the effect of recycled PET fiber made from waste PET bottle on the control of plastic shrinkage cracking of cement based composites. PET is blown as a plastic material and used in a variety products such as a beverage bottle. However, waste PET bottles are thrown after the usage, raising huge problems in terms of the environment. Thus, the research on the method to recycle the PET bottles indicates important aspects in environment and economy. The method to recycle waste PET bottles as a reinforcing fiber for cement based composites is one of effective methods in terms of the recycle of waste PET bottles. In this research, the effect of recycled PET fiber geometry and length on the control of plastic shrinkage was examined through thin slab tests. A test program was carried out to understand the influence of fiber geometry, length and fiber volume fraction. Three type of recycled PET fibers including straight, twist crimped and embossed type. Three volume fraction and two fiber length were investigated for each of the three fiber geometry. Test results indicated that recycled PET fibers are effective in controlling plastic shrinkage cracking in cement based composites. In respect to effect of length of fiber, longer fiber was observed to have efficient cracking controlling with low volume fraction in same fiber geometry while shorter fiber controled plastic shrinkage cracking efficiently as addition rate increase. Also, embossed type fibers were more effective in controlling plastic shrinkage cracking than other geometry fiber at low volume fraction. But, for high volume fraction, straight type fibers were most effective in plastic shrinkage cracking controlling in cement based composites.