• 제목/요약/키워드: Low-Power Device

검색결과 1,294건 처리시간 0.029초

하드웨어 저전력 기능을 활용한 웨어러블 운영체제의 하이브리드 가버너 (Hybrid Governor for Wearable OS Using H/W Low-power Features)

  • 이성엽;김형신
    • 대한임베디드공학회논문지
    • /
    • 제13권3호
    • /
    • pp.117-124
    • /
    • 2018
  • Wearable devices have become widespread. Fitness band is one of common wearable devices, providing useful functions. It helps users to monitor and collect their status such as heart rate and travel distance. Wearable devices, including fitness bands, are designed in small size and it ends up having small battery capacity. In that regard, it is necessary to expand the lifetime of wearable devices. Conventional power management scheme of wearable devices is based on DVFS Ondemand Governor and peripheral control by timeout event, such as turning off the LCD. In this paper, we propose a hybrid governor applying hardware supporting low power mode such as sleep mode to exploit the periodicity of fitness band task. In addition, we show hybrid governor outperforms in power consumption than conventional power management scheme of wearable devices based on Ondemand Governor through experiments.

Deep Trench Filling 기술을 적용한 600 V급 Super Junction Power MOSFET의 최적화 특성에 관한 연구 (A Study on 600 V Super Junction Power MOSFET Optimization and Characterization Using the Deep Trench Filling)

  • 이정훈;정은식;강이구
    • 한국전기전자재료학회논문지
    • /
    • 제25권4호
    • /
    • pp.270-275
    • /
    • 2012
  • Power MOSFET(metal oxide silicon field effect transistor) operate voltage-driven devices, design to control the large power switching device for power supply, converter, motor control, etc. But on-resistance characteristics depending on the increasing breakdown voltage spikes is a problem. So 600 V planar power MOSFET compare to 1/3 low on-resistance characteristics of super junction MOSFET structure. In this paper design to 600 V planar MOSFET and super junction MOSFET, then improvement of comparative analysis breakdown voltage and resistance characteristics. As a result, super junction MOSFET improve on about 40% on-state voltage drop performance than planar MOSFET.

Class-E CMOS PAs for GSM Applications

  • Lee, Hong-Tak;Lee, Yu-Mi;Park, Chang-Kun;Hong, Song-Cheol
    • Journal of electromagnetic engineering and science
    • /
    • 제9권1호
    • /
    • pp.32-37
    • /
    • 2009
  • Various Class-E CMOS power amplifiers for GSM applications are presented. A stage-convertible transformer for a dual mode power amplifier is proposed to increase efficiency in the low-output power region. An integrated passive device(IPD) process is used to reduce combiner losses. A split secondary 1:2 transformer with IPD process is designed to obtain efficient and symmetric power combining. A quasi-four-pair structure of CMOS PA is also proposed to overcome the complexities of power combining.

LSTM Model-based Prediction of the Variations in Load Power Data from Industrial Manufacturing Machines

  • Rita, Rijayanti;Kyohong, Jin;Mintae, Hwang
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.295-302
    • /
    • 2022
  • This paper contains the development of a smart power device designed to collect load power data from industrial manufacturing machines, predict future variations in load power data, and detect abnormal data in advance by applying a machine learning-based prediction algorithm. The proposed load power data prediction model is implemented using a Long Short-Term Memory (LSTM) algorithm with high accuracy and relatively low complexity. The Flask and REST API are used to provide prediction results to users in a graphical interface. In addition, we present the results of experiments conducted to evaluate the performance of the proposed approach, which show that our model exhibited the highest accuracy compared with Multilayer Perceptron (MLP), Random Forest (RF), and Support Vector Machine (SVM) models. Moreover, we expect our method's accuracy could be improved by further optimizing the hyperparameter values and training the model for a longer period of time using a larger amount of data.

DC 전류에 의한 직렬 아크 특성 분석 (Analysis of Serial Arc with DC Current)

  • 반기종;남문현;김낙교
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1700-1701
    • /
    • 2007
  • DC Arc Fault Current is an electric discharge which is occurred in two opposite electrode. In this paper, DC arc detection device is designed for the display of DC arc fault current which is occurred in the local electric network with DC Power. This DC arc is one of the main causes of electric fire. Arc fault in electrical network has the characteristics of low current, high impedance and low frequency. DC Arc current detection device is designed for the display of arc fault current which has the modified arc characteristics.

  • PDF

사물인터넷 시스템을 위한 저전력 반복 깨우기 기법 (Low-Power-Consumption Repetitive Wake-up Scheme for IoT Systems)

  • 강카이;김진천;은성배
    • 한국정보통신학회논문지
    • /
    • 제25권11호
    • /
    • pp.1596-1602
    • /
    • 2021
  • 사물인터넷 시스템에서 배터리로 동작하는 사물인터넷 장치는 저전력 소모가 필수이다. 일반적으로 사물인터넷 장치들은 주기적으로 수면 상태에 진입하여 전력 소모를 줄인다. 하지만 비동기 사용자 요구 환경에서는 응답시간을 줄이기 위해 듀티 사이클을 줄여야 하므로 전력 소모 절감 효과가 줄어든다. 본 논문에서는 실내 전등 제어와 같은 비동기 제어가 필요한 환경에서도 장치의 전력 소모 절감 효과를 높일 수 있는 새로운 기법을 제안한다. 제안하는 반복 깨우기(repetitive wake-up) 기법은 스마트폰에서 깨우기 신호를 반복적으로 전송하고 사물인터넷 장치는 듀티 사이클을 최소화함으로써 전력 소모를 줄일 수 있다. 스마트폰 앱과 사물인터넷 장치를 구현하고 실험을 통해 제안하는 반복 깨우기 기법이 기존의 동기적 수면/활동 기법보다 최대 5배 이상 전력 소모를 줄일 수 있음을 보였다.

SSR (Simple Sector Remapper) the fault tolerant FTL algorithm for NAND flash memory

  • Lee, Gui-Young;Kim, Bumsoo;Kim, Shin-han;Byungsoo Jung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.932-935
    • /
    • 2002
  • In this paper, we introduce new FTL(Flash Translation Layer) driver algorithm that tolerate the power off errors. FTL driver is the software that provide the block device interface to the upper layer software such as file systems or application programs that using the flash memory as a block device interfaced storage. Usually, the flash memory is used as the storage devices of the mobile system due to its low power consumption and small form factor. In mobile system, the state of the power supplement is not stable, because it using the small sized battery that has limited capacity. So, a sudden power off failure can be occurred when we read or write the data on the flash memory. During the write operation, power off failure may introduce the incomplete write operation. Incomplete write operation denotes the inconsistency of the data in flash memory. To provide the stable storage facility with flash memory in mobile system, FTL should provide the fault tolerance against the power off failure. SSR (Simple Sector Remapper) is a fault tolerant FTL driver that provides block device interface and also provides tolerance against power off errors.

  • PDF

산업 파워 모듈용 900 V MOSFET 개발 (Development of 900 V Class MOSFET for Industrial Power Modules)

  • 정헌석
    • 한국전기전자재료학회논문지
    • /
    • 제33권2호
    • /
    • pp.109-113
    • /
    • 2020
  • A power device is a component used as a switch or rectifier in power electronics to control high voltages. Consequently, power devices are used to improve the efficiency of electric-vehicle (EV) chargers, new energy generators, welders, and switched-mode power supplies (SMPS). Power device designs, which require high voltage, high efficiency, and high reliability, are typically based on MOSFET (metal-oxide-semiconductor field-effect transistor) and IGBT (insulated-gate bipolar transistor) structures. As a unipolar device, a MOSFET has the advantage of relatively fast switching and low tail current at turn-off compared to IGBT-based devices, which are built on bipolar structures. A superjunction structure adds a p-base region to allow a higher yield voltage due to lower RDS (on) and field dispersion than previous p-base components, significantly reducing the total gate charge. To verify the basic characteristics of the superjunction, we worked with a planar type MOSFET and Synopsys' process simulation T-CAD tool. A basic structure of the superjunction MOSFET was produced and its changing electrical characteristics, tested under a number of environmental variables, were analyzed.

DC and RF Characteristics of $0.15{\mu}m$ Power Metamorphic HEMTs

  • Shim, Jae-Yeob;Yoon, Hyung-Sup;Kang, Dong-Min;Hong, Ju-Yeon;Lee, Kyung-Ho
    • ETRI Journal
    • /
    • 제27권6호
    • /
    • pp.685-690
    • /
    • 2005
  • DC and RF characteristics of $0.15{\mu}m$ GaAs power metamorphic high electron mobility transistors (MHEMT) have been investigated. The $0.15{\mu}m{\times}100{\mu}m$ MHEMT device shows a drain saturation current of 480 mA/mm, an extrinsic transconductance of 830 mS/mm, and a threshold voltage of -0.65 V. Uniformities of the threshold voltage and the maximum extrinsic transconductance across a 4-inch wafer were 8.3% and 5.1%, respectively. The obtained cut-off frequency and maximum frequency of oscillation are 141 GHz and 243 GHz, respectively. The $8{\times}50{\mu}m$ MHEMT device shows 33.2% power-added efficiency, an 18.1 dB power gain, and a 28.2 mW output power. A very low minimum noise figure of 0.79 dB and an associated gain of 10.56 dB at 26 GHz are obtained for the power MHEMT with an indium content of 53% in the InGaAs channel. This excellent noise characteristic is attributed to the drastic reduction of gate resistance by the T-shaped gate with a wide head and improved device performance. This power MHEMT technology can be used toward 77 GHz band applications.

  • PDF

고전압 전력소자를 보호하기 위한 Sense FET 설계방법 (A Design Method on Power Sense FET to Protect High Voltage Power Device)

  • 경신수;서준호;김요한;이종석;강이구;성만영
    • 한국전기전자재료학회논문지
    • /
    • 제22권1호
    • /
    • pp.12-16
    • /
    • 2009
  • Current sensing in power semiconductors involves sensing of over-current in order to protect the device from harsh conditions. This technique is one of the most important functions in stabilizing power semiconductor device modules. The sense FET is very efficient method with low power consumption, fast sensing speed and accuracy. In this paper, we have analyzed the characteristics of proposed sense FET and optimized its electrical characteristics to apply conventional 450 V power MOSFET by numerical and simulation analysis. The proposed sense FET has the n-drift doping concentration $1.5{\times}10^{14}cm^{-3}$, size of $600{\um}m^2$ with $4.5\;{\Omega}$, and off-state leakage current below $50{\mu}A$. We offer the layout of the proposed sense FET to process actually. The offerd design and optimization methods are meaningful, which the methods can be applied to the power devices having various breakdown voltages for protection.