• Title/Summary/Keyword: Low voltage operation

Search Result 1,030, Processing Time 0.034 seconds

Dynamic Range Extension of CMOS Image Sensor with Column Capacitor and Feedback Structure (컬럼 커패시터와 피드백 구조를 이용한 CMOS 이미지 센서의 동작 범위 확장)

  • Lee, Sanggwon;Jo, Sung-Hyun;Bae, Myunghan;Choi, Byoung-Soo;Kim, Heedong;Shin, Eunsu;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • This paper presents a wide dynamic range complementary metal oxide semiconductor (CMOS) image sensor with column capacitor and feedback structure. The designed circuit has been fabricated by using $0.18{\mu}m$ 1-poly 6-metal standard CMOS technology. This sensor has dual mode operation using combination of active pixel sensor (APS) and passive pixel sensor (PPS) structure. The proposed pixel operates in the APS mode for high-sensitivity in normal light intensity, while it operates in the PPS mode for low-sensitivity in high light intensity. The proposed PPS structure is consisted of a conventional PPS with column capacitor and feedback structure. The capacitance of column capacitor is changed by controlling the reference voltage using feedback structure. By using the proposed structure, it is possible to store more electric charge, which results in a wider dynamic range. The simulation and measurement results demonstrate wide dynamic range feature of the proposed PPS.

입자침전법을 이용한 광도전체 필름의 X선 반응 특성에 관한 연구

  • Choe, Chi-Won;Gang, Sang-Sik;Jo, Seong-Ho;Gwon, Cheol;Nam, Sang-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.176-176
    • /
    • 2007
  • Flat-panel direct conversion detectors used in compound substance of semiconductor are being studied for digital x-ray imaging. Recently, such detectors are deposited by physical vapor deposition(PVD) generally. But, most of materials (HgI2, PbI2, TlBr, PbO) deposited by PVD have shown difficult fabrication and instability for large area x-ray imaging. Consequently, in this paper, we propose applicable potentialities for screen printing method that is coated on a substrate easily. It is compared to electrical properties among semiconductors such as $HgI_2$, $PbI_2$, PbO, HgBrI, InI, and $TlPbI_3$ under investigation for direct conversion detectors. Each film detector consists of an ~25 to $35\;{\mu}m$ thick layer of semiconductor and was coated onto the substrate. Substrates of $2cm{\times}2cm$ have been used to evaluate performance of semiconductor radiation detectors. Dark current, sensitivity and physics properties were measured. Leakage current of $HgI_2$ as low as $9pA/mm^2$ at the operation bias voltage of ${\sim}1V/{\mu}m$ was observed. Such a value is not better than PVD process, but it is easy to be fabricated in high quality for large area x-ray Imaging. Our future efforts will concentrate on optimization of growth of film thickness that is coated onto a-Si TFT array.

  • PDF

DC Characteristic of Silicon-on-Insulator n-MOSFET with SiGe/Si Heterostructure Channel (SiGe/Si 이종접합구조의 채널을 이용한 SOI n-MOSFET의 DC 특성)

  • Choi, A-Ram;Choi, Sang-Sik;Yang, Hyun-Duk;Kim, Sang-Hoon;Lee, Sang-Heung;Shim, Kyu-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.99-100
    • /
    • 2006
  • Silicon-on-insulator(SOI) MOSFET with SiGe/Si heterostructure channel is an attractive device due to its potent use for relaxing several limits of CMOS scaling, as well as because of high electron and hole mobility and low power dissipation operation and compatibility with Si CMOS standard processing. SOI technology is known as a possible solution for the problems of premature drain breakdown, hot carrier effects, and threshold voltage roll-off issues in sub-deca nano-scale devices. For the forthcoming generations, the combination of SiGe heterostructures and SOI can be the optimum structure, so that we have developed SOI n-MOSFETs with SiGe/Si heterostructure channel grown by reduced pressure chemical vapor deposition. The SOI n-MOSFETs with a SiGe/Si heterostructure are presented and their DC characteristics are discussed in terms of device structure and fabrication technology.

  • PDF

Improved Uniformity in Resistive Switching Characteristics of GeSe Thin Film by Ag Nanocrystals

  • Park, Ye-Na;Shin, Tae-Jun;Lee, Hyun-Jin;Lee, Ji-Soo;Jeong, Yong-Ki;Ahn, So-Hyun;Lee, On-You;Kim, Jang-Han;Nam, Ki-Hyun;Chung, Hong-Bay
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.237.2-237.2
    • /
    • 2013
  • ReRAM cell, also known as conductive bridging RAM (CBRAM), is a resistive switching memory based on non-volatile formation and dissolution of conductive filament in a solid electrolyte [1,2]. Especially, Chalcogenide-based ReRAM have become a promising candidate due to the simple structure, high density and low power operation than other types of ReRAM but the uniformity of switching parameter is undesirable. It is because diffusion of ions from anode to cathode in solid electrolyte layer is random [3]. That is to say, the formation of conductive filament is not go through the same paths in each switching cycle which is one of the major obstacles for performance improvement of ReRAM devices. Therefore, to control of nonuniform conductive filament formation is a key point to achieve a high performance ReRAM. In this paper, we demonstrated the enhanced repeatable bipolar resistive switching memory characteristics by spreading the Ag nanocrystals (Ag NCs) on amorphous GeSe layer compared to the conventional Ag/GeSe/Pt structure without Ag NCs. The Ag NCs and Ag top electrode act as a metal supply source of our devices. Excellent resistive switching memory characteristics were obtained and improvement of voltage distribution was achieved from the Al/Ag NCs/GeSe/Pt structure. At the same time, a stable DC endurance (>100 cycles) and an excellent data retention (>104 sec) properties was found from the Al/Ag NCs/GeSe/ Pt structured ReRAMs.

  • PDF

Development of a 3 kW Grid-tied PV Inverter With GaN HEMT Considering Thermal Considerations (GaN HEMT를 적용한 3kW급 계통연계 태양광 인버터의 방열 설계 및 개발)

  • Han, Seok-Gyu;Noh, Yong-Su;Hyon, Byong-Jo;Park, Joon-Sung;Joo, Dongmyoung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.5
    • /
    • pp.325-333
    • /
    • 2021
  • A 3 kW grid-tied PV inverter with Gallium nitride high-electron mobility transistor (GaN HEMT) for domestic commercialization was developed using boost converter and full-bridge inverter with LCL filter topology. Recently, many GaN HEMTs are manufactured as surface mount packages because of their lower parasitic inductance characteristic than standard TO (transistor outline) packages. A surface mount packaged GaN HEMT releases heat through either top or bottom cooling method. IGOT60R070D1 is selected as a key power semiconductor because it has a top cooling method and fairly low thermal resistances from junction to ambient. Its characteristics allow the design of a 3 kW inverter without forced convection, thereby providing great advantages in terms of easy maintenance and high reliability. 1EDF5673K is selected as a gate driver because its driving current and negative voltage output characteristics are highly optimized for IGOT60R070D1. An LCL filter with passive damping resistor is applied to attenuate the switching frequency harmonics to the grid-tied operation. The designed LCL filter parameters are validated with PSIM simulation. A prototype of 3 kW PV inverter with GaN HEMT is constructed to verify the performance of the power conversion system. It achieved high power density of 614 W/L and peak power efficiency of 99% for the boost converter and inverter.

Study of Harmonic Suppression of Ship Electric Propulsion Systems

  • Wang, Yifei;Yuan, Youxin;Chen, Jing
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1303-1314
    • /
    • 2019
  • This paper studies the harmonic characteristics of ship electric propulsion systems and their treatment methods. It also adopts effective measures to suppress and prevent ship power systems from affecting ship operation due to the serious damage caused by harmonics. Firstly, the harmonic characteristics of a ship electric propulsion system are reviewed and discussed. Secondly, aiming at problems such as resonant frequency and filter characteristics variations, resonance point migration, and unstable filtering performances in conventional passive filters, a method for fully tuning of a passive dynamic tunable filter (PDTF) is proposed to realize harmonic suppression. Thirdly, to address the problems of the uncontrollable inductance L of traditional air gap iron core reactors and the harmonics of power electronic impedance converters (PEICs), this paper proposes an electromagnetic coupling reactor with impedance transformation and harmonic suppression characteristics (ECRITHS), with the internal filter (IF) designed to suppress the harmonics generated by PEICs. The ECRITHS is characterized by both harmonic suppression and impedance change. Fourthly, the ECRITHS is investigated. This investigation includes the harmonic suppression characteristics and impedance transformation characteristics of the ECRITHS at the fundamental frequency, which shows the good performance of the ECRITHS. Simulation and experimental evaluations of the PDTF are carried out. Multiple PDTFs can be configured to realize multi-order simultaneous dynamic filtering, and can effectively eliminate the current harmonics of ship electric propulsion systems. This is done to reduce the total harmonic distortion (THD) of the supply currents to well below the 5% limit imposed by the IEEE-519 standard. The PDTF also can eliminate harmonic currents in different geographic places by using a low voltage distribution system. Finally, a detailed discussion is presented, with challenges and future implications discussed. The research results are intended to effectively eliminate the harmonics of ship electric power propulsion systems and to improve the power quality of ship power systems. This is of theoretical and practical significance for improving the power quality and power savings of ship power systems.

High-Order Temporal Moving Average Filter Using Actively-Weighted Charge Sampling (능동-가중치 전하 샘플링을 이용한 고차 시간상 이동평균 필터)

  • Shin, Soo-Hwan;Cho, Yong-Ho;Jo, Sung-Hun;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.2
    • /
    • pp.47-55
    • /
    • 2012
  • A discrete-time(DT) filter with high-order temporal moving average(TMA) using actively-weighted charge sampling is proposed in this paper. To obtain different weight of sampled charge, the variable transconductance OTA is used prior to charge sampler, and the ratio of charge can be effectively weighted by switching the control transistors in the OTA. As a result, high-order TMA operation can be possible by actively-weighted charge sampling. In addition, the transconductance generated by the OTA is relatively accurate and stable by using the size ratio of the control transistors. The high-order TMA filter has small size, increased voltage gain, and low parasitic effects due to the small amount of switches and sampling capacitors. It is implemented in the TSMC $0.18-{\mu}m$ CMOS process by TMA-$2^2$. The simulated voltage gain is about 16.7 dB, and P1dB and IIP3 are -32.5 dBm and -23.7 dBm, respectively. DC current consumption is about 9.7 mA.

Thermally Stimulated Current Analysis of (Ba, Sr)TiO$_3$ Capacitor ((Ba, Sr)TiO$_3$ 커패시터의 Thermally Stimulated Current분석)

  • Kim, Yong-Ju;Cha, Seon-Yong;Lee, Hui-Cheol;Lee, Gi-Seon;Seo, Gwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.329-337
    • /
    • 2001
  • It has been known that the leakage current in the low field region consists of the dielectric relaxation current and intrinsic leakage current, which cause the charge loss in dynamic random access memory (DRAM) storage capacitor using (Ba,Sr)TiO$_{3}$ (BST) thin film. Especially, the dielectric relaxation current should be seriously considered since its magnitude is much larger than that of the intrinsic leakage current in giga-bit DRAM operation voltage (~IY). In this study, thermally stimulated current (TSC) measurement was at first applied to investigate the activation energy of traps and relative evaluation of the density of traps according to process change. And, through comparing TSC to early methods of I-V or I-t measurement and analyzing, we identify the origin of the dielectric relaxation current and investigate the reliability of TSC measurement. First, the polarization condition such as electric field, time, temperature and heating rate was investigated for reliable TSC measurement. From the TSC measurement, the energy level of traps in the BST thin film has been investigated and evaluated to be 0.20($\pm$0.01) eV and 0.45($\pm$0.02) eV. Based on the TSC measurement results before and after rapid thermal annealing (RTA) process, oxygen vacancy is concluded to be the origin of the traps. TSC characteristics with thermal annealing in the MIM BST capacitor have shown the same trends with the current-voltage (I-V) and current-time (I-t) characteristics. This means that the TSC measurement is one of the effective methods to characterize the traps in the BST thin film.

  • PDF

Characteristics of Plasma Discharge according to the Gas-flow Rate in the Atmospheric Plasma Jets (대기압 플라즈마 제트의 기체 유량에 대한 방전 특성)

  • Lee, Won Young;Jin, Dong Jun;Kim, Yun Jung;Han, Gook Hee;Yu, Hong Keun;Kim, Hyun Chul;Jin, Se Whan;Koo, Je Huan;Kim, Do Young;Cho, Guangsup
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.3
    • /
    • pp.111-118
    • /
    • 2013
  • The influence of gas flow on the plasma generation in the atmospheric plasma jet is described with the theory of hydrodynamics. The plasma discharge is affected by the gas-flow streams with Reynolds number (Re) as well as the gas pressure with Bernoulli's theorem according to the gas flow rate inserted into the glass tube. The length of plasma column is varied with the flow types such as the laminar flow of Re<2,000 and the turbulent flow of Re>4,000 as it has been known in a general fluid experiments. In the laminar flow, the plasma column length is increased as the increase of flow rate. Since the pressure in the glass tube becomes low as the increase of flow velocity by the Bernoulli's theorem, the breakdown voltage of plasma discharge is reduced by the Paschen's law. Therefore, the plasma length is increased as the increasing flow rate with the fixed operation voltage. In the transition of laminar and turbulent flows, the plasma length is decreased. When the flow becomes turbulent as the flow rate is increasing, the plasma length becomes short and the discharge is shut down ultimately. In the discharge of laminar flow, the diameter of plasma beam exposed on the substrate surface is kept less than the glass diameter, since the gas flow is kept to the distinct distance from the nozzle of glass tube.

The Optimization of $0.5{\mu}m$ SONOS Flash Memory with Polycrystalline Silicon Thin Film Transistor (다결정 실리콘 박막 트랜지스터를 이용한 $0.5{\mu}m$ 급 SONOS 플래시 메모리 소자의 개발 및 최적화)

  • Kim, Sang Wan;Seo, Chang-Su;Park, Yu-Kyung;Jee, Sang-Yeop;Kim, Yun-Bin;Jung, Suk-Jin;Jeong, Min-Kyu;Lee, Jong-Ho;Shin, Hyungcheol;Park, Byung-Gook;Hwang, Cheol Seong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.10
    • /
    • pp.111-121
    • /
    • 2012
  • In this paper, a poly-Si thin film transistor with ${\sim}0.5{\mu}m$ gate length was fabricated and its electrical characteristics are optimized. From the results, it was verified that making active region with larger grain size using low temperature annealing is an efficient way to enhance the subthreshold swing, drain-induced barrier lowering and on-current characteristics. A SONOS flash memory was fabricated using this poly-Si channel process and its performances are analyzed. It was necessary to optimize O/N/O thickness for the reduction of electron back tunneling and the enhancement of its memory operation. The optimized device showed 2.24 V of threshold voltage memory windows which coincided with a well operating flash memory.