Browse > Article
http://dx.doi.org/10.5757/JKVS.2013.22.3.111

Characteristics of Plasma Discharge according to the Gas-flow Rate in the Atmospheric Plasma Jets  

Lee, Won Young (Department of Electrophysics, Kwangwoon University)
Jin, Dong Jun (Department of Electrophysics, Kwangwoon University)
Kim, Yun Jung (Department of Electrophysics, Kwangwoon University)
Han, Gook Hee (Department of Electrophysics, Kwangwoon University)
Yu, Hong Keun (Department of Electrophysics, Kwangwoon University)
Kim, Hyun Chul (Department of Electrophysics, Kwangwoon University)
Jin, Se Whan (Department of Electrophysics, Kwangwoon University)
Koo, Je Huan (Department of Electrophysics, Kwangwoon University)
Kim, Do Young (Department of Electrophysics, Kwangwoon University)
Cho, Guangsup (Department of Electrophysics, Kwangwoon University)
Publication Information
Journal of the Korean Vacuum Society / v.22, no.3, 2013 , pp. 111-118 More about this Journal
Abstract
The influence of gas flow on the plasma generation in the atmospheric plasma jet is described with the theory of hydrodynamics. The plasma discharge is affected by the gas-flow streams with Reynolds number (Re) as well as the gas pressure with Bernoulli's theorem according to the gas flow rate inserted into the glass tube. The length of plasma column is varied with the flow types such as the laminar flow of Re<2,000 and the turbulent flow of Re>4,000 as it has been known in a general fluid experiments. In the laminar flow, the plasma column length is increased as the increase of flow rate. Since the pressure in the glass tube becomes low as the increase of flow velocity by the Bernoulli's theorem, the breakdown voltage of plasma discharge is reduced by the Paschen's law. Therefore, the plasma length is increased as the increasing flow rate with the fixed operation voltage. In the transition of laminar and turbulent flows, the plasma length is decreased. When the flow becomes turbulent as the flow rate is increasing, the plasma length becomes short and the discharge is shut down ultimately. In the discharge of laminar flow, the diameter of plasma beam exposed on the substrate surface is kept less than the glass diameter, since the gas flow is kept to the distinct distance from the nozzle of glass tube.
Keywords
Atmospheric plasma jet; Flow rate; Reynolds number; Laminar flow; Turbulent flow; Bernoulli's theorem;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 G. Cho, H. Lim, J. H. Kim, D. J. Jin, G. C. Kwon, E. H. Choi, and H. S. Uhm, IEEE Transactions on Plasma Science 39, 1234 (2011).   DOI   ScienceOn
2 H. S. Uhm, J. Korean Vac. Soc. 15, 117 (2006).
3 G. Fridman, M. Peddinghaus, H. Ayan, A. Fridman, M. Balasubramanian, A. Gutsol, A. Brooks, and G. Friedman, Plasma Chemistry and Plasma Processing 26, 425 (2006).   DOI   ScienceOn
4 G. Fridman, G. Friedman, A. Gutsol, B. Shekhter, V. N. Vasilets, and A. Fridman, Plasma Processes and Polymers 5, 503 (2008).   DOI   ScienceOn
5 J. Hermann, M. Benfarah, S. Bruneau, E. Axente, G. Coustillier, T. Itina, J. F. Guillemoles, and P. Alloncle, Journal of Physics D: Applied Physics 39, 453 (2006).   DOI   ScienceOn
6 S. Hermann, T. Dezhdar, N. P. Harder, R. Brendel, M. Seibt, and S. Stroj, Journal of Applied Physics 108, 114514 (2010).   DOI   ScienceOn
7 G. Heise, M. Domke, J. Konrad, S. Sarrach, J. Sotrop, and H. P. Huber, Journal of Physics D: Applied Physics 45, 315303 (2012).   DOI   ScienceOn
8 J. G. Kim, W. Y. Lee, Y. J. Kim, G. H. Han, D. J. Kim, H. C. Kim, J. H. Koo, G. C. Kwon, and G. S. Cho, J. Korean Vac. Soc. 21, 301 (2012).   DOI   ScienceOn
9 T. Kawamura and K. Kuwahara, American Institute of Aeronautics and Astronautics 22, 12 (1984).
10 G. A. Hughmark and B. S. Pressburg, AIChE Journal 7, 677 (1961).   DOI
11 D. W. Kim, S. G. Kim, K. H. Song, and C. H. Jang, Thermohydrodynamics, (Bookshill, Seoul, 2008), pp. 274-275.
12 G. Kang, Understanding of Fluid Mechanics, (Bosunggack, Seoul, 2004), pp. 168-171.
13 C. E. Tansley and D. P. Marshall, Journal of Physical Oceanography 31, 3274 (2001).   DOI
14 G. G. Stokes, Transactions of the Cambridge Philosophical Society 9, 8 (1851).
15 O. Reynolds, Philosophical Transactions of the Royal Society 174, 935 (1883).   DOI
16 N. Rott, Annual Review of Fluid Mechanics 22, 1 (1990).   DOI   ScienceOn
17 H. K. Lim, D. J. Jin, J. H. Kim, S. H. Han, and G. S. Cho, J. Korean Vac. Soc. 20, 14 (2011).   DOI   ScienceOn
18 J. Y. Jeong, Y. J. Kim, M. K. Lee, G. H. Han, H. C. Kim, D. J. Jin, J. H. Kim, E. H. Choi, H. S. Uhm, and G. S. Cho, Journal of the Korean Physical Society 61, 557 (2012).   DOI   ScienceOn
19 J. E. A. John and W. L. Haberman, Introduction to Fluid Mechanics, (Prentice Hall, New Jersey, 1988), p. 224.