• 제목/요약/키워드: Low temperature oxidation

검색결과 589건 처리시간 0.023초

Effects of heat-treatment temperature on carbon-based composites with added illite

  • Jeong, Eui-Gyung;Kim, Jin-Hoon;Lee, Young-Seak
    • Carbon letters
    • /
    • 제12권2호
    • /
    • pp.95-101
    • /
    • 2011
  • To investigate new applications for illite as an additive for carbon-based composites, the composites were prepared with and without illite at different heat-treatment temperatures. The effects of the heat-treatment temperature on the chemical structure, microstructure, and thermal oxidation properties of the resulting composites were studied. As the heat-treatment temperature was increased, silicon carbide SiC formation via carbothermal reduction increased until all the added illite was consumed in the case of the samples heat-treated at $2,300^{\circ}C$. This is attributed to the intimate contact between the $SiO_2$ in the illite and the phenol carbon precursor or the carbon fibers of the preform. Among composites prepared at all temperatures, those with illite addition exhibited fewer pores, voids, and interfacial cracks, resulting in larger bulk densities and lower porosities. A delay of oxidation was not observed in the illite-containing composites prepared at $2,300^{\circ}C$, suggesting that the illite itself absorbed energy for exfoliation or other physical changes. Therefore, if the illite-containing C/C composites can reach a density generally comparable to that of other C/C composites, illite may find application as a filler for C/C composites. However, in this study, the illite-containing C/C composites exhibited low density, even when prepared at a high heat-treatment temperature of $2300^{\circ}C$, although the thermal oxidation of the resulting composites was improved.

저탄소강의 질화침탄과 산화처리시 분위기 변화에 따른 조직 및 부식특성에 관한 연구 (A Study on the Corrosion Properties and Microstructure of the Nitrocarburized and Oxidized Low Carbon Steel according to the Treatment Atmospheres)

  • 신평우;이구현;남기석;박율민;조형준
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.87-93
    • /
    • 2004
  • Nitrocarburizing was carried out with various $CH_4$ gas composition with 4 torr gas pressure at $570^{\circ}C$ for 3 hours and post oxidation was carried out with 100% $O_2$ gas atmosphere with 4 torr at different temperatures for various time. In the case of plasma nitrocarburizing, It is that the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) and ${\gamma}^{\prime}-Fe_4$(C, N), which comprise the compound layer phase, depend on concentrations of $N_2$ gas and $CH_4$ such that when the concentration of $N_2$ and $CH_4$ increased, the ratio of ${\gamma}^{\prime}-Fe_4$(C, N) decreased, but the ratio of ${\varepsilon}-Fe_{2-3}$(N, C) increased. The thickness of compound layer consistently increased as gas concentration increased regardless of $N_2$ and $CH_4$ expect when the concentration of $CH_4$ was 3.5 volume%, it decreased insignificantly. When oxidizing for 15min in the temperature range of $460{\sim}570{^\circ}C$, the study found small amount of $Fe_3O_4$ at the temperature of $460{^\circ}C$ and also found that amounts of $Fe_2O_3$. and $Fe_3O_4$ on the surface and amount of ${\gamma}^{\prime}-Fe_4$(C, N) in the compound layer increased as the increased over $460^{\circ}C$, but the thickness of the compound layer decreased. Corrosion resistance was influenced by oxidation times and temperature.

Sm을 첨가한 BaTiO3계의 재산화 온도 및 시간에 따른 PTC 특성 변화 (Effects of the Re-oxidation Temperature and Time on the PTC Properties of Sm-doped BaTiO3)

  • 정용근;최성철
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.330-335
    • /
    • 2009
  • We investigated the effects of the re-oxidation temperature and time on the positive temperature coefficient (PTC) of resistivity characteristics of Sm-doped $BaTiO_3$ sintered at $1200{\sim}1260^{\circ}C$ for 2 h in a reducing atmosphere (3% $H_2/N_2$), followed by re-oxidization processes in air, in which re-oxidization temperature and time were $600{\sim}1000^{\circ}C$ and $1{\sim}10$h, respectively. The result reveals that Smdoped (Ba,Ca)$TiO_3$ ceramics fired in a reducing atmosphere exhibit low PTC characteristics, whereas the sample re-oxidized at $800^{\circ}C$ for 1 h in air exhibit pronounced PTC characteristics. The room-temperature resistivity and jumping characteristics of resistivity (${\rho}_{max}/{\rho}25^{\circ}C$) decrease with Sm contents. The PTC characteristics with reoxidization time at $800^{\circ}C$ have improved about $2{\sim}3$ orders of magnitude whereas differed according to the sintering temperature. The 0.7 at% Sm-doped (Ba,Ca)$TiO_3$ samples reveal the best PTC characteristics in the present range of formula and processes.

Hot-press법으로 제조된 $Y_2O_3$$Nb_2O_5$가 첨가된 정방정 ZrO2의 고온열화 (High-Temperature Degradation of Hot-Pressed $t-ZrO_2$ Co-doped with $Y_2O_3$ and $Nb_2O_5$)

  • 이득용;김대준;조경식
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.915-920
    • /
    • 1997
  • Tetragonal ZrO2 polycrystal (TZP), consisted of 90.24 mol% ZrO2-5.31 mol% Y2O3-4.45 mol% Nb2O5, were prepared using hot-press and mechanical properties and high-temperature degradation were investigated. The specimen, hot-pressed for 1 h at 140$0^{\circ}C$ in Ar atmosphere, exhibited flexural strength of 1010 MPa and fracture toughness of 7.5 MPam1/2 and experienced no low-temperature degradation below 40$0^{\circ}C$. However, as aged for 100h at temperatures higher than 40$0^{\circ}C$, TZP was suffered by high-temperature degradation due to an extensive cavitation caused by the oxidation of carbon. XPS observation revealed that the carbon incorporated in TZPs during hot-pressing exists as either an ether-type CO or a carbonyl-type C=O. Despite of the high-temperature degradation of t-ZrO2 co-doped with Y2O3 and Nb2O5, its flexural strength and fracture toughness were superior to those of the commercial 3 mol% Y2O3-TZP hot-pressed under the identical condition as determined before and after the aging treatments.

  • PDF

초음파분무법으로 제조한 α-Fe2O3 막의 구조적 및 전기적 특성에 미치는 기판온도 효과 (Effects of Substrate Temperature on Structural and Electrical Properties of α-Fe2O3 Films Prepared by Ultrasonic Spray Pyrolysis)

  • 마대영;김정규
    • 센서학회지
    • /
    • 제13권4호
    • /
    • pp.282-286
    • /
    • 2004
  • ${\alpha}-Fe_{2}O_{3}$ films were prepared by ultrasonic spray pyrolysis (USP) on $SiO_{2}$ coated Si wafers using iron acetylacetonate as an iron precursor. The crystallographic properties and surface morphologies of the films were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. X-ray photoelectron spectroscopy (XPS) was carried out to determine the Fe oxidation states. In order to observe stability of the films to temperature, the resistance variation of the films with an ambient temperature was measured. The effects of substrate temperature on the structural and electrical properties of the ${\alpha}-Fe_{2}O_{3}$ films were studied. The films were densified from the substrate temperature of $350^{\circ}C$. The grain size of the films grown at $400^{\circ}C$ was shown to be increased abruptly comparing with that of $350^{\circ}C$. The films showed a low resistance variation between the ambient temperature of $300^{\circ}C$ and $350^{\circ}C$.

OXIDATION CHARACTERISTICS OF PARTICULATE MATTER ON DIESEL WARM-UP CATALYTIC CONVERTER

  • Choi, B.C.;Yoon, Y.B.;Kang, H.Y.;Lim, M.T.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.527-534
    • /
    • 2006
  • Modern passenger cars with diesel engines are equipped with DOC(diesel oxidation catalyst) for the purpose of reducing HC and CO in the exhaust stream. Cold start exhaust emissions pose troubles here as on gasoline engine vehicles. As a result, some of the diesel passenger cars roll off todays the assembly lines with WCC(warm-up catalytic converter). Oxidation characteristics of the particulates in WCC is analyzed in this study by EEPS(engine exhaust particulate size spectrometer). The maximum number of PM is found to come out of WCC in sizes near 10nm when an HSDI diesel engine is operated under the conditions of high speed and medium to heavy load. When the temperature of the WCC exceeds $300^{\circ}C$, the number of PM smaller than 30 nm in diameter sharply increases upon passing through the WCC. Total mass of emitted PM gets reduced downstream of the WCC under low speed and light load conditions due to adsorption of PM onto the catalyst. Under conditions of high speed and medium to heavy load, the relatively large PM shrink or break into fine particles during oxidation process within the WCC, which results in more mass fraction of fine particles downstream of the WCC.

메탄올 산화 반응 메커니즘과 전기화학 산화 촉매 최신 동향 (The Trends in Methanol Oxidation Reaction Mechanisms and Electrochemical Oxidation Catalysts)

  • 봉성율
    • 공업화학
    • /
    • 제35권2호
    • /
    • pp.79-84
    • /
    • 2024
  • 메탄은 풍부하고 재생 가능한 탄화수소이지만, 온실가스로서 지구 온난화를 발생시킨다. 따라서 메탄을 유용한 화학물질이나 에너지원으로의 변환이 필요하다. 메탄올은 메탄의 부분 산화 반응을 통해 합성할 수 있는 간단하고 풍부한화학물질이다. 메탄올은 화학 공급 원료나 수송 연료로 사용될 뿐만 아니라, 저온 연료 전지의 연료로도 적합하다. 그러나 메탄올의 전기화학 산화는 복잡하고 다단계의 반응이므로, 이 반응을 이해하고 최적화하기 위해서는 새로운 전기화학촉매와 반응 메커니즘의 연구가 필요하다. 본 총설에서는 메탄올 산화 반응 메커니즘 및 최근 연구 동향과 향후 연구 방향을 고찰하였다.

Corrosion behavior of SA508 low alloy steels exposed to aerated boric acid solutions

  • Lim, Yun Soo;Hwang, Seong Sik;Kim, Dong Jin;Lee, Jong Yeon
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1222-1230
    • /
    • 2020
  • The corrosion rates of the reactor pressure vessel materials of SA508 Grade 3 were measured using a weight loss method in aerated boric acid solutions to simulate the evaporation of leaked PWR primary water in an ambient environment. The corrosion behavior and products were examined using X-ray diffraction and electron microscopy. SA508 showed typical general corrosion characteristics. The corrosion rate increased steadily as the boron concentration was increased. As the immersion time elapsed, the corrosion rate slowly or rapidly decreased according to the oxidation reaction of iron. The corrosion rate showed a complicated pattern depending on the temperature; it increased gradually and then rapidly decreased again when reaching a certain transition temperature. The corrosion products of SA508 were found to be FeO(OH), Fe2O3, and Fe3O4. As the boron concentration decreased and the temperature was increased, the formation of Fe3O4 was more favorable as compared to the formation of FeO(OH) and Fe2O3. Consequently, the changes of the corrosion rate and behavior were closely related to the oxidation reaction of iron on the surface. The corrosive damage to SA508 appears to be most severe when the oxidation reaction is such that Fe2O3 forms as a corrosion product.

Cu-Mn 혼합산화물 상에서 일산화탄소의 저온산화반응 (Low Temperature CO Oxidation over Cu-Mn Mixed Oxides)

  • 조경호;박정현;신채호
    • 청정기술
    • /
    • 제16권2호
    • /
    • pp.132-139
    • /
    • 2010
  • 서로 다른 몰비의 Cu-Mn 혼합산화물을 공침법으로 제조하여 $30^{\circ}C$에서 CO 산화반응을 수행하였다. 제조된 촉매는 CO 산화반응에서 반응 활성과 연관시키기 위하여 XRD, $N_2$ 흡착 및 탈착, XPS, $H_2-TPR$ 등의 특성분석을 수행하였다. 제조된 촉매의 질소흡착 등온곡선은 4형태로 7-20 nm크기의 세공이 존재하며, Mn의 함량이 증가함에 따라 BET 표면적은 17에서 $205m^2{\cdot}g^{-1}$ 으로 증가하였다. XPS 분석으로 Cu-Mn 혼합산화물 상의 Cu는 주성분이 2+의 산화상태임을 확인하였고, Mn은 +3과 +4의 산화 상태를 나타냈다. Cu-Mn 촉매의 함량 및 비율에 따른 최적 활성을 실험 조사한 결과, $30^{\circ}C$의 반응온도에서 Cu/(Cu+Mn)의 몰비가 0.5일 때 가장 좋은 활성을 나타냈으며, 이를 기준으로 화산형 형태의 반응 곡선을 나타냈다. 수분 존재하의 CO 산화반응은 활성점에 수분과 CO의 경쟁흡착으로 촉매의 활성을 감소시켰으며 최종적으로는 활성금속 성분과 하이드록실 그룹을 형성하였기 때문이다.

경유 중 황이 산화촉매 장착 디젤엔진의 입자상 물질에 미치는 영향 (The Effect of Fuel Sulfer on Particulate Matter of Diesel Engine Equipped with Oxidation Catalyst)

  • 조강래;신영조;류정호;김희강
    • 한국대기환경학회지
    • /
    • 제13권6호
    • /
    • pp.487-495
    • /
    • 1997
  • The most desirable diesel oxidation catalyst (DOC) should have the properties of oxidizing CO, HC and SOF effectively at low exhaust gas temperature while minimizing the formation of sulfate at high exhaust gas temperature. Precious metals such as platinum and palladium have been known to be sufficiently active for oxidizing SOF and also to have high activity for the oxidation of sulfur dioxide $(SO_2)$ to sulfur trioxide $(SO_3)$. There is a need to develop a highly selective catalyst which can promote the oxidation SOF efficiently, on the other hand, suppress the oxidation of $SO_2$. In this study, a Pt-V catalyst was prepared by impregnating platinum and vanadium onto a Ti-Si wash coated ceramic monolith substrate. A prepared Pt-V catalytic converter was installed on a heavy duty diesel engine and the effect of fuel sulfur on particulate matter (PM) of heavy duty diesel engine was measured. The effect of fuel sulfur on PM of Pt-V was also compared with that of a commercialized Pt catalyst currently being used in some of the heavy duty diesel engines in advanced countries. Only 1 $\sim$ 3% of sulfur in the diesel fuel was converted to sulfate in PM for the engine without catalyst, but almost 100% of sulfur conversion was achieved for the engine with Pt catalyst at maximum loading condition. In the case of Pt-V catalyst, there was no big difference in conversion with the base engine even at maximum loading condition. The reason of SOF increase according to the increase of suflate emission was identified as the washing off effect of bound water in sulfate.

  • PDF