• Title/Summary/Keyword: Low temperature growth

Search Result 2,045, Processing Time 0.05 seconds

Investigations of Pd Based hybrid ohmic contacts to high-low doped n-type GaAs

  • Baik, Hong-Koo;Kwak, Joon-Seop
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1997.06a
    • /
    • pp.231-236
    • /
    • 1997
  • To improve electrical properties and uniformity of high-low doped n-type GaAs, new ohmic contacts with a low-resistance and the superior uniformity was developed using a concept of hybrid ohmic contact. The hybrid ohmic contact displayed good surface and interface morphology and had minimum contact resistivity of 3${\times}$10-6 $\Omega$$\textrm{cm}^2$ in a wide annealing temperature ranged from 340$^{\circ}C$ to 420$^{\circ}C$, which was much wider than that of conventional ohmic contacts. The microstructural analysis showed that the Pd/Ge ohmic contact at low annealing temperature (∼300$^{\circ}C$) and also annealing temperature (∼400$^{\circ}C$), resulting ij hybrid ohmic contacts.

  • PDF

Effects of abiotic stressors on kelp early life-history stages

  • Lind, Alyssa C.;Konar, Brenda
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.223-233
    • /
    • 2017
  • Kelp forests and the many vital ecosystem services they provide are threatened as the severity of climate change and other anthropogenic stressors continues to mount. Particularly in the North Pacific, sea surface temperature is warming and glacial melt is decreasing salinity. This study explored the resiliency of early life-history stages of these foundation species through a factorial laboratory experiment. The effects of rising sea surface temperature under low salinity conditions on kelp spore settlement and initial gametophyte growth in Eualaria fistulosa, Nereocystis luetkeana, and Saccharina latissima were investigated. Decreased settlement and growth were observed in these species at elevated temperatures and at low salinity. Eualaria fistulosa spores and gametophytes were the most negatively impacted, compared to the more widely distributed N. luetkeana and S. latissima. These results suggest that N. luetkeana and S. latissima could potentially outperform E. fistulosa under projected conditions. However, despite decreased performance among all species, our findings indicate that these species are largely resilient to temperature changes when exposed to a low salinity, even when the temperature changes are immediate and extreme. By exploring how early life-history stages of several key kelp species are impacted by dual stressors, this research enhances our understanding of how kelp forests will respond to projected and extreme changes in temperature when already stressed by low salinity.

Optimization of Growth Gases for the Low-temperature Synthesis of Carbon Nanotubes (탄소나노튜브의 저온성장을 위한 합성가스의 최적화 연구)

  • Kim, Young-Rae;Jeon, Hong-Jun;Lee, Han-Sung;Goak, Jeung-Choon;Hwang, Ho-Soo;Kong, Byung-Yun;Lee, Nae-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.4
    • /
    • pp.342-349
    • /
    • 2009
  • This study investigated the growth characteristics of carbon nanotubes (CNTs) by changing a period of annealing time and a $C_{2}H_{2}/H_2$ flow ratio at temperature as low as $450^{\circ}C$ with inductively coupled plasma chemical vapor deposition. The 1-nm-thick Fe-Ni-Co alloy thin film served as a catalyst layer for the growth of CNTs, which was thermally evaporated on the 15-nm-thick Al underlayer deposited on the 50-nm-thick Ti diffusion barrier. The annealing at low temperature of $450^{\circ}C$ brought about almost no granulation of the catalyst layer, and the CNT growth was not affected by a period of annealing time. A study of changing the flow rate of $C_{2}H_{2}$ and $H_2$ showed that as the ratio of the $C_{2}H_{2}$ flow rate to the $H_2$ flow rate was lowered, the CNTs were grown to be longer With further decreasing the flow ratio, the length of CNTs reached the maximum and then became shorter. Under the optimized gas flow rates, we successfully synthesized CNTs with a uniform length over a 4-inch Si wafer at $450^{\circ}C$.

Influence of Summer Pruning Time on Shoot Growth and Fruit Quality of 'Fuji'/M.9 Apple Tree Damaged by the Low Air Temperature at Flowering Period (개화기에 저온 피해를 받은 '후지'/M.9 사과나무의 하계전정 시기가 신초생장 및 과실품질에 미치는 영향)

  • Hun-Joong Kweon;Dong-Hoon Sagong
    • Korean Journal of Environmental Agriculture
    • /
    • v.41 no.4
    • /
    • pp.328-334
    • /
    • 2022
  • BACKGROUND: The low temperature at flowering period break the balance between vegetative and reproductive growth of apple tree. Summer pruning has been used to control vegetative growth. So, this study was conducted to investigate the effect of summer pruning time on shoot growth and fruit quality of 'Fuji'/M.9 apple trees damaged by the low temperature at flowering period. METHODS AND RESULTS: The following treatments were applied to tree : a) control (no summer pruning), b) pruned 26 June, c) pruned 30 July, d) pruned 28 August, and e) pruned 26 September. The summer pruning significantly increased light penetration and fruit red color by reducing the total shoot growth compared with control. And the summer pruning control the outbreak of apple valsa canker. But the summer pruning at the end of June increased regrowth of shoot and pruning weight compared with the summer pruning at the end of August. The summer pruning at 30 July had the highest fruit weight, but return bloom was the highest in the summer pruning at 28 August. CONCLUSION(S): These results indicated the optimum summer pruning time of 'Fuji'/M.9 apple trees damaged by the low temperature at flowering period were the end of August.

Characteristics of Creep Crack Growth in Pure Copper at Elevated Temperature (순동의 고온에서의 크리프 균열성장 특성)

  • Nahm, Seung-Hoon;Kim, Am-Kee;Jung, Min-Woo;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.495-500
    • /
    • 2001
  • The significant creep in copper takes place at relatively low temperature and applied stress. Thus the study on modeling of creep behavior using the copper should provide researchers with benefits such as time for the test. In this study, a test of creep crack growth regarding copper was performed at 400 and $500^{\circ}C$, and analyzed. As result, the crack growth rate at $500^{\circ}C$ turned out to be 10 times higher than that at $400^{\circ}C$ in terms of $C^*$, while the crack growth rate at $500^{\circ}C$ was several hundreds times higher than that at $400^{\circ}C$ in terms of K. Moreover, a linear relationship between the crack growth rate and $C^*$ at the same temperature was established.

  • PDF

Nucleation and Growth of Diamond in High Pressure

  • Choi, Jun-Youp;Park, Jong-Ku;Kang, Suk-Joong L.;Kwang, Yong-Eun
    • The Korean Journal of Ceramics
    • /
    • v.2 no.4
    • /
    • pp.221-225
    • /
    • 1996
  • In diamond synthesis by metal film growth method under high pressure and high temperature, the nucleation and growth of diamond was observed dependent on the carbon source variation from graphite powder to the heat treated powders of lamp black carbon. At the low driving force condition near equilibrium pressure and temperature line, nucleation of diamond did not occur but growth of seed diamond appeared in the synthesis from lamp black carbon while both nucleation and growth of diamond took place in the synthesis from graphite. Growth morphology change of diamond occurred from cubo-octahedron to octahedron in the synthesis from graphite but very irregular growth of seed diamond occurred in the synthesis from lamp block carbon. Lamp black carbon transformed to recrystallized graphite first and very nucleation of diamond was observed on the recrystallized graphite surface. Growth morphology of diamond on the recrystallized graphite was clear cubo-octahedron even at higher pressure departure condition from equilibrium pressure and temperature line.

  • PDF

Chilling Control of meat for quality retention (식육의 품질보존을 위한 저온관리(I))

  • 이성갑
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.1
    • /
    • pp.71-77
    • /
    • 1983
  • Meat itself contains all the essential nutrients for the organisms, because it is high in moisture, rich in nitrogenous, Plentifully supplied with minerals and accessory growth factors, usually has come fermantable carbohydrates and is at a faverable PH for most microorganisms. So, microorganisn can grow and multiply rapidly well in it and caused spoilage of meat and their Product. Therefore, storage and handling of meat must be Strictly controlled on contamination and growth of organism by a low temperature, among the low temperature control, chilling control of meat is one of the best method as good retention for meat quality.

  • PDF

Carbon Nanotube Deposition using Helicon Plasma CVD at Low Temperature

  • Muroyama, Masakazu;Kazuto, Kimura;Yagi, Takao;Inoue, Kouji;Saito, Ichiro
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.201-202
    • /
    • 2003
  • We developed a novel growth method of aligned carbon nanotubes. Aligned carbon nanotubes are grown on a metal catalyst on a glass substrate using biased Helicon plasma chemical vapor deposition (HPECVD) of $CH_4/H_2$ gases from 400 C to 500 C. The Helicon plasma source is one of the high-density plasma sources and is promising for low temperature carbon deposition. A Ni film was used as a catalyst to reduce the activation energy of the nanotubes' growth. The carbon nanotubes were deposited on the nickel catalysis layer selectively.

  • PDF

CHARACTERIZATIONS OF TILTED SUPERLATTICE QUANTUM WIRE GROWN BY MIGRATION ENHANCED EPITAXY METHOD

  • Kim, D.W.;Woo, J.C.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.753-759
    • /
    • 1996
  • The artificial construction of well-defined low-dimensional (low-D) quantum structures, such as quantum wire (QWR) still attracts attention of many researchers due to their applications in room-temperature optoelectronic devices. In this work, the migration enhanced epitaxial growth (MEE) and the analysis of InAs/ AlAs QWR are reported. On the vicinal semi-insulating InP substrate of $3^o$ tilted cut from (100) surface towards (010) direction, InAs/ AlAs QWR superlattices have been successfully grown by MEE with the introduction of growth interruption at each shutter operation of MBE cell. The in-situ RHEED analyses show that MEE gives superior step-flow growth (SFG) and sharper interface formation over a conventional MBE growth. We have grown 4 samples in series varying the growth temperature. The QWR samples are analyzed by photoluminescence (PL) and atomic force microscopy (AFM). From the AFM images, we can get the definitely resolved 1-D structures. This structure is believed to be due to the MEE method and its separation is better than any other data from others. We are now studying the dependence of the structure on the growth temperature.

  • PDF