• 제목/요약/키워드: Low temperature degradation (LTD)

검색결과 32건 처리시간 0.027초

Influence of the preparation design and artificial aging on the fracture resistance of monolithic zirconia crowns

  • Mitov, Gergo;Anastassova-Yoshida, Yana;Nothdurft, Frank Phillip;See, Constantin von;Pospiech, Peter
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권1호
    • /
    • pp.30-36
    • /
    • 2016
  • PURPOSE. The aim of this study was to evaluate the fracture resistance and fracture behavior of monolithic zirconia crowns in accordance with the preparation design and aging simulation method. MATERIALS AND METHODS. An upper first molar was prepared sequentially with three different preparation designs: shoulderless preparation, 0.4 mm chamfer and 0.8 mm chamfer preparation. For each preparation design, 30 monolithic zirconia crowns were fabricated. After cementation on Cr-Co alloy dies, the following artificial aging procedures were performed: (1) thermal cycling and mechanical loading (TCML): 5000 cycles of thermal cycling $5^{\circ}C-55^{\circ}C$ and chewing simulation (1,200,000 cycles, 50 N); (2) Low Temperature Degradation simulation (LTD): autoclave treatment at $137^{\circ}C$, 2 bar for 3 hours and chewing simulation; and (3) no pre-treatment (control group). After artificial aging, the crowns were loaded until fracture. RESULTS. The mean values of fracture resistance varied between 3414 N (LTD; 0.8 mm chamfer preparation) and 5712 N (control group; shoulderless preparation). Two-way ANOVA analysis showed a significantly higher fracture loads for the shoulderless preparation, whereas no difference was found between the chamfer preparations. In contrast to TCML, after LTD simulation the fracture strength of monolithic zirconia crowns decreased significantly. CONCLUSION. The monolithic crowns tested in this study showed generally high fracture load values. Preparation design and LTD simulation had a significant influence on the fracture strength of monolithic zirconia crowns.

DSP & FPGA 기반의 적외선 영상에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어 (Real-Time Fixed Pattern Noise Suppression using Hardware Neural Networks in Infrared Images Based on DSP & FPGA)

  • 박장한;한정수;천승우
    • 전자공학회논문지CI
    • /
    • 제46권4호
    • /
    • pp.94-101
    • /
    • 2009
  • 본 논문은 냉각형 적외선(infrared focal plane array; IRFPA) 영상시스템에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어를 위해 고속 DSP & FPGA 기반의 H/W 설계 방법을 제안한다. 고정패턴잡음은 검출기의 불균일 보정처리후에도 관측영상의 온도분포 변화에 의해 발생한다. 이것은 열상 화질의 저하뿐만 아니라 다른 응용에도 문제되는 중요한 요소이다. 냉각형 적외선 영상시스템의 신호처리구조는 저온, 상온, 고온의 3개 테이블을 기준으로 이득(gain) 값과 편차(offset) 값을 연산한다. 제안된 방법은 3개 편차 테이블에서 각각 교차되는 영역을 세분화하여 가상의 테이블을 만들고, 입력 영상의 구분된 3개 영역에서 영상의 평균값으로 하드웨어 뉴럴 네트워크의 가중치 값을 조정하여 최적의 온도구간을 선정한다. 이와 같은 방법은 영상의 평균값으로부터 저온, 상온, 혹은 고온의 이득, 편차 테이블을 연산하고, 운용 중에 지속적으로 편차 보상을 적용하지 않아도 된다. 따라서 제안된 방법은 실시간 처리로 관측영상의 온도분포 변화에 의해 발생하는 고정패턴잡음을 제어하여 영상화질의 개선된 결과를 보였다.

멤브레인 형 2차 방벽 이방성 복합재료의 섬유방향에 따른 기계적 성능 평가 (Evaluation of Mechanical Performance of Membrane Type Secondary Barrier Anisotropic Composites depending on Fiber Direction)

  • 정연제;김정대;황병관;김희태;오훈규;김용태;박성보;이제명
    • 대한조선학회논문집
    • /
    • 제57권3호
    • /
    • pp.168-174
    • /
    • 2020
  • Recently, the size of Liquified Natural Gas (LNG) carriers has been increasing, in turn increasing the load generated during operation. To handle this load, the thickness of LNG Cargo Containment Systems (CCSs) should be increased. Despite increasing the thickness of LNG CCSs, a secondary barrier is still used in conventional thickness. Therefore, the mechanical performance of the existing secondary barrier should be verified. In this study, tensile test of the secondary barrier was performed to evaluate mechanical properties under several low- and cryogenic-temperature conditions considering LNG environment, and in each fiber direction considering that the secondary barrier is composed of anisotropic composite materials depending on the glass fibers. Additionally, the coefficient of thermal expansion was measured by considering the degradation of the mechanical properties of the secondary barrier caused by the generated thermal stress during periodical unloading. As a result, the mechanical performance of secondary barrier in the Machine Direction (MD) was generally found to be superior than that in the Transverse Direction (TD) owing to the warp interlock structure of the glass fibers.

임플란트 시술용 지르코니아 소재의 연삭가공 성능 평가에 관한 연구 (A Study on the Grinding Characteristics of Surgical Implant Zirconia)

  • 이상민;채승수;이충석;김택수;이재건;이종찬
    • 한국기계가공학회지
    • /
    • 제13권1호
    • /
    • pp.72-77
    • /
    • 2014
  • 3.2YSZ melted by the 'skull melting' method has good physical properties and does not undergo low-temperature degradation. Due to its excellent physical and mechanical properties, skull-melted 3.2YSZ has been developed as a dental implant material. In this study, a porous, resin-bonded diamond wheel was created and its grinding characteristics were compared with those of traditional nonporous wheels using skull-melted 3.2YSZ. The experimental results indicate that the porous, resin-bonded diamond wheel requires less grinding force and power. In addition, the porous, resin-bonded diamond wheel requires a greater degree of roughness.

PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구 (Study on the Fenton Reaction Condition for Evaluation of Chemical Durability of PEMFC Membrane)

  • 오소형;박지상;정성기;정지홍;박권필
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.49-53
    • /
    • 2021
  • 고분자 연료전지(PEMFC) 고분자막의 화학적 내구성을 평가하는데 Fenton 반응이 자주 사용된다. 그러나 과산화수소와 철 이온의 격렬한 반응 때문에 재현성이 낮아 실험 데이터를 비교하기가 어려운 문제점이 있다. 본 연구에서는 Fenton 반응에 의한 고분자막 내구성 실험의 재현성을 향상시키기 위한 반응조건을 찾고자 하였다. 과산화수소 농도는 30%로 고정시키고 철이온 농도와 온도, 교반속도, 시료크기를 변화시키며 라디칼에 열화된 Nafion 고분자막의 불소이온 농도를 측정했다. 철이온 농도를 높게하거나 고분자막 시료 크기를 크게하고, Fenton 반응 온도를 80 ℃로 높게하면 실험편차가 커져서 철이온 농도 10 ppm, 온도 70 ℃와 시료크기 0.5 ㎠가 적합하였다.

열역학적 방법을 사용한 펌프 효율 측정에 관한 연구 (A Study on the Pump Efficiency Measurement Using the Thermodynamic Method)

  • 배철오;브엉득푹;이휘일
    • 해양환경안전학회지
    • /
    • 제18권3호
    • /
    • pp.267-272
    • /
    • 2012
  • 에너지 생성에 따른 탄소배출문제로 국제 에너지 기구는 세계 주요국의 에너지 효율을 15~30[%]이상 향상시키도록 권고하고 있으며, 국내 에너지 정책 동향도 에너지 절감 및 탄소 배출에 대해 정부에서 인센티브 및 페널티 프로그램을 제고하는 방향으로 가고 있다. 각국의 산업 현장에서 유체 이송용 펌프가 전기에너지의 20[%]를 소비하고 있는 실정으로, 주요 에너지 낭비 요인으로는 장시간 운전에 따른 효율 저하, 부적절한 설계 및 설비 등이 있다. 이러한 낭비를 줄이기 위해 펌프의 효율을 측정하여 펌프의 운전 상태를 진단하고자, 본 논문에서는 열역학적 방법으로 온도와 압력센서만을 활용하여 펌프의 최고 효율점을 측정할 수 있는 방법을 제시하고 실제 펌프의 효율을 계산하여 펌프제조사에서 제공한 성능곡선과 비교한 결과 유사한 성능곡선을 얻어 그 유효성을 확인하였다.

OBIGGS용 공중합체 폴리이미드를 이용한 기체분리막의 투과 특성평가 (Characterization of Gas Permeation Properties of Polyimide Copolymer Membranes for OBIGGS)

  • 이정무;이명건;김득주;남상용
    • 멤브레인
    • /
    • 제24권4호
    • /
    • pp.325-331
    • /
    • 2014
  • 새로운 구조를 가진 폴리이미드를 이용하여 고투과, 고선택성 불활성기체충진장치용 기체 분리막을 제조하였다. 높은 기체투과도와 용해도를 나타내는 무수물인 2,2-bis(3,4-carboxylphenyl) hexafluoropropane와 두 종류의 아민을 사용하여 신규 폴리이미드를 합성하였다. 투과도를 증가시키기 위해 2,3,5,6-Tetramethyl-1,4-phenylenediamine를 사용하였고, 선택도를 높이기 위해 여러 종류의 아민을 사용하였다. 화학적 이미드화 방법으로 공중합체를 준비되었으며 100,000 g/mol 이상의 평균 분자량을 나타내었다. 합성된 고분자의 열적 특성을 분석을 하기 위해 유리전이 온도($T_g$)와 열적 특성은 시차주사열량계(DSC)와 열중량분석기(TGA)로 측정을 하였으며, 유리전이온도($T_g$)는 $300^{\circ}C$, 열분해 온도는 $500^{\circ}C$가 넘어 뛰어난 열적 특성을 보였다. 기체투과도 특성은 time-lag 장비를 사용하였으며 그 결과, 일반 폴리이미드의 경우 대부분 기체투과도가 1 barrer 이하의 수치를 보이지만, 합성된 고분자의 경우 산소투과도 36.21 barrer과 산소/질소 선택도의 경우 4.1로 고투과 고선택도를 나타내어 불활성기체 충진장치용 장치로의 적용 가능성을 확인할 수 있었다.

열변형 저감을 위한 고분자 복합소재 배합 조건에 따른 재료특성 분석 (Analysis of Material Properties According to Compounding Conditions of Polymer Composites to Reduce Thermal Deformation)

  • 변상원;김영신;전의식
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.148-154
    • /
    • 2022
  • As the 4th industrial age approaches, the demand for semiconductors is increasing enough to be used in all electronic devices. At the same time, semiconductor technology is also developing day by day, leading to ultraprecision and low power consumption. Semiconductors that keep getting smaller generate heat because the energy density increases, and the generated heat changes the shape of the semiconductor package, so it is important to manage. The temperature change is not only self-heating of the semiconductor package, but also heat generated by external damage. If the package is deformed, it is necessary to manage it because functional problems and performance degradation such as damage occur. The package burn in test in the post-process of semiconductor production is a process that tests the durability and function of the package in a high-temperature environment, and heat dissipation performance can be evaluated. In this paper, we intend to review a new material formulation that can improve the performance of the adapter, which is one of the parts of the test socket used in the burn-in test. It was confirmed what characteristics the basic base showed when polyamide, a high-molecular material, and alumina, which had high thermal conductivity, were mixed for each magnification. In this study, functional evaluation was also carried out by injecting an adapter, a part of the test socket, at the same time as the specimen was manufactured. Verification of stiffness such as tensile strength and flexural strength by mixing ratio, performance evaluation such as thermal conductivity, and manufacturing of a dummy device also confirmed warpage. As a result, it was confirmed that the thermal stability was excellent. Through this study, it is thought that it can be used as basic data for the development of materials for burn-in sockets in the future.

DEVELOPMENT OF SN BASED MULTI COMPONENT SOLDER BALLS WITH CD CORE FOR BGA PACKAGE

  • Sakatani, Shigeaki;Kohara, Yasuhiro;Uenishi, Keisuke;Kobayashi, Kojiro F.;Yamamoto, Masaharu
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.450-455
    • /
    • 2002
  • Cu-cored Sn-Ag solder balls were fabricated by coating pure Sn and Ag on Cu balls. The melting behavior and the solderability of the BGA joint with the Ni/Au coated Cu pad were investigated and were compared with those of the commercial Sn-Ag and Sn-Ag-Cu balls. DSC analyses clarified the melting of Cu-cored solders to start at a rather low temperature, the eutectic temperature of Sn-Ag-Cu. It was ascribed to the diffusion of Cu and Ag into Sn plating during the heating process. After reflow soldering the microstructures of the solder and of the interfacial layer between the solder and the Cu pad were analyzed with SEM and EPMA. By EDX analysis, formation of a eutectic microstructure composing of $\beta$-Sn, Ag$_3$Sn, ad Cu$_{6}$Sn$_{5}$ phases was confirmed in the solder, and the η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer was found to form at the interface between the solder and the Cu pad. By conducting shear tests, it was found that the BGA joint using Cu-cored solder ball could prevent the degradation of joint strength during aging at 423K because of the slower growth me of η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer formed at the solder, pad interface. Furthermore, Cu-cored multi-component Sn-Ag-Bi balls were fabricated by sequentially coating the binary Sn-Ag and Sn-Bi solders on Cu balls. The reflow property of these solder balls was investigated. Melting of these solder balls was clarified to start at the almost same temperature as that of Sn-2Ag-0.75Cu-3Bi solder. A microstructure composing of (Sn), Ag$_3$Sn, Bi and Cu$_{6}$Sn$_{5}$ phases was found to form in the solder ball, and a reaction layer containing primarily η'-(Au, Co, Cu, Ni)$_{6}$Sn$_{5}$ was found at the interface with Ni/Au coated Cu pad after reflow soldering. By conducting shear test, it was found that the BGA joints using this Cu-core solder balls hardly degraded their joint shear strength during aging at 423K due to the slower growth rate of the η'-(Au, Cu, Ni)$_{6}$Sn$_{5}$ reaction layer at the solder/pad interface.he solder/pad interface.

  • PDF

Analysis of osteogenic potential on 3mol% yttria-stabilized tetragonal zirconia polycrystals and two different niobium oxide containing zirconia ceramics

  • Hein, Aung Thu;Cho, Young-Dan;Jo, Ye-Hyeon;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권2호
    • /
    • pp.147-154
    • /
    • 2018
  • PURPOSE. This study was performed to evaluate the osteogenic potential of 3mol% yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) and niobium oxide containing Y-TZPs with specific ratios, new (Y,Nb)-TZPs, namely YN4533 and YN4533/Al20 discs. MATERIALS AND METHODS. 3Y-TZP, YN4533 and YN4533/Al20 discs (15 mm diameter and 1 mm thickness) were prepared and their average surface roughness ($R_a$) and surface topography were analyzed using 3-D confocal laser microscope (CLSM) and scanning electron microscope (SEM). Mouse pre-osteoblast MC3T3-E1 cells were seeded onto all zirconia discs and evaluated with regard to cell attachment and morphology by (CLSM), cell proliferation by PicoGreen assay, and cell differentiation by Reverse-Transcription PCR and Quantitative Real-Time PCR, and alkaline phosphatase (Alp) staining. RESULTS. The cellular morphology of MC3T3-E1 pre-osteoblasts was more stretched on a smooth surface than on a rough surface, regardless of the material. Cellular proliferation was higher on smooth surfaces, but there were no significant differences between 3Y-TZP, YN4533, and YN4533/Al20. Osteoblast differentiation patterns on YN4533 and YN4533/Al20 were similar to or slightly higher than seen in 3Y-TZP. Although there were no significant differences in bone marker gene expression (alkaline phosphatase and osteocalcin), Alp staining indicated better osteoblast differentiation on YN4533 and YN4533/Al20 compared to 3Y-TZP. CONCLUSION. Based on these results, niobium oxide containing Y-TZPs have comparable osteogenic potential to 3Y-TZP and are expected to be suitable alternative ceramics dental implant materials to titanium for aesthetically important areas.